• Title/Summary/Keyword: Modular equations

Search Result 50, Processing Time 0.022 seconds

Design Equation of a Coupled Beam to Limit Deflection of Modular Unit Structures (모듈러 유닛 구조물의 사용성 향상을 위해 연결된 보의 처짐 제한을 위한 설계식 개발)

  • Park, Ji-Hun;An, Seok-Hyun;Cho, Bong-Ho;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.471-475
    • /
    • 2007
  • Design equations of coupling plates, which connects floor beam of the upper modular unit and overhead beam of the lower one in order to improve serviceability in vibration, are proposed. End conditions of the coupled beams is semi-rigid and the optimal location of the coupling plates are assumed. Rotational constraints for both ends of the coupling plate modeled with beam elements are released and flexibility method is applied to obtain deflection equations of the coupled beam. Proposed equations are defined using the flexibility of the coupling plate, of which size can be determined inversely. Based on numerical analysis, coefficients of the design equations are calibrated and the revised equations are verified to be useful in the design of the coupled beam.

  • PDF

ON EVALUATIONS OF THE CUBIC CONTINUED FRACTION BY A MODULAR EQUATION OF DEGREE 9

  • PAEK, DAE HYUN;YI, JINHEE
    • The Pure and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.223-236
    • /
    • 2016
  • We show how to evaluate the cubic continued fraction $G(e^{-{\pi}\sqrt{n}})$ and $G(-e^{-{\pi}\sqrt{n}})$ for n = 4m, 4−m, 2 · 4m, and 2−1 · 4−m for some nonnegative integer m by using modular equations of degree 9. We then find some explicit values of them.

Stability study on tenon-connected SHS and CFST columns in modular construction

  • Chen, Yisu;Hou, Chao;Peng, Jiahao
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.185-199
    • /
    • 2019
  • Modular construction is an emerging technology to accommodate the increasing restrictions in terms of construction period, energy efficiency and environmental impacts, since each structural module is prefabricated offsite beforehand and assembled onsite using industrialized techniques. However, some innate structural drawbacks of this innovative method are also distinct, such as connection tying inaccessibility, column instability and system robustness. This study aims to explore the theoretical and numerical stability analysis of a tenon-connected square hollow section (SHS) steel column to address the tying and stability issue in modular construction. Due to the excellent performance of composite structures in fire resistance and buckling prevention, concrete-filled steel tube (CFST) columns are also taken into account in the analysis to evaluate the feasibility of adopting composite sections in modular buildings. Characteristic equations with three variables, i.e., the length ratio, the bending stiffness ratio and the rotational stiffness ratio, are generated from the fourth-order governing differential equations. The rotational stiffness ratio is recognized as the most significant factor, with interval analysis conducted for its mechanical significance and domain. Numerical analysis using ABAQUS is conducted for validation of characteristic equations. Recommendations and instructions in predicting the buckling performance of both SHS and CFST columns are then proposed.

ON EVALUATIONS OF THE CUBIC CONTINUED FRACTION BY MODULAR EQUATIONS OF DEGREE 3 REVISITED

  • Jinhee Yi;Ji Won Ahn;Gang Hun Lee;Dae Hyun Paek
    • The Pure and Applied Mathematics
    • /
    • v.31 no.2
    • /
    • pp.189-200
    • /
    • 2024
  • We derive modular equations of degree 3 to find corresponding theta-function identities. We use them to find some new evaluations of $G(e^{-{\pi}{\sqrt{n}}})$ and $G(-e^{-{\pi}{\sqrt{n}}})$ for $n\,=\,\frac{25}{3{\cdot}4^{m-1}}$ and $\frac{4^{1-m}}{3{\cdot}25}$, where m = 0, 1, 2.

Design Strength of Non-symmetric Composite Column for Modular Unit Frames (모듈러 유닛 골조용 비대칭 합성기둥의 설계강도)

  • Park, Keum-Sung;Lee, Sang-Sup;Moon, Ji-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.101-109
    • /
    • 2018
  • Modular structural systems have been used increasingly for low- and mid-rise structures such as school and apartment buildings. Studies have recently been conducted on the application of the modular structural system to high-rise buildings. To provide sufficient resistances and economical construction for the high-rise modular structural system, a composite unit modular structure was proposed. In this study, the strength of the non-symmetric composite column for the proposed composite unit modular structure was investigated through a series of tests. The experimental study focused on the effect of the slenderness of the column, eccentricity, and through bars on the strength of such a column. Design equations for the non-symmetric column for a modular unit structure were also proposed. From the results, it was found that the proposed design equations provide reasonable strength prediction of the non-symmetric composite column for the modular unit structure.

ON EVALUATIONS OF THE CUBIC CONTINUED FRACTION BY MODULAR EQUATIONS OF DEGREE 3

  • Paek, Dae Hyun;Shin, Yong Jin;Yi, Jinhee
    • The Pure and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.17-29
    • /
    • 2018
  • We find modular equations of degree 3 to evaluate some new values of the cubic continued fraction $G(e^{-{\pi}\sqrt{n}})$ and $G(-e^{-{\pi}\sqrt{n}})$ for $n={\frac{2{\cdot}4^m}{3}}$, ${\frac{1}{3{\cdot}4^m}}$, and ${\frac{2}{3{\cdot}4^m}}$, where m = 1, 2, 3, or 4.

Shear Behaviour of Precast Concrete Modular Beam Using Connecting Plate (연결 플레이트를 사용한 프리캐스트 콘크리트 모듈러 보의 전단성능)

  • Cho, Chang Geun;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.65-72
    • /
    • 2021
  • The Precast concrete(PC) modular structures are a method of assembling pre-fabricated unit modules in the construction site. The essential aim of modular structures is to introduce a connection method that can ensure splicing performance and effectively resist shear strength. This study proposed PC module using a connecting plate that can replace splice sleeves and shear keys used in the conventional PC modular structures. To evaluate the splicing performance and shear capacity of the proposed method, the shear test was conducted by fabricating one monolithic reinforced concrete(RC) beam and two PC modular beams with a shear span-to-depth ratio as variables. The experimental results showed that the shear capacity of the PC modular beam was about 89% compared to that of the RC beam, and showed a failure of the RC beam according to the shear span-to-depth ratio. Therefore, it was considered that the connecting plate effectively transferred the stress between each PC module through the joint and ensure integrity. In addition, the applicability of shear strength equation of ACI 318-19 and Zsutty's equation to PC modular beams were evaluated. Results demonstrated that the improved shear strength equations are needed to consider reduction of shear strength in PC modules.

Eigen-analysis of SSR in Power Systems with Modular Network Model Equations (Modular 네트워크 모델 구성에 의한 전력계통 SSR 현상의 고유치해석)

  • Nam, Hae-Kon;Kim, Yong-Gu;Shim, Kwan-Shik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1239-1246
    • /
    • 1999
  • This paper presents a new algorithm to construct the modular network model for SSR analysis by simply applying KCL to each node and KVL to all branches connected to the node sequentially. This method has advantages that the model can be derived directly from the system data for transient stability study and turbine/generator shaft model, the resulted model in the form of augmented state matrix is very sparse, and thus efficient SSR study of a large scale system becomes possible. The proposed algorithm is verified with the IEEE First and Second Benchmark models.

  • PDF