ON EVALUATIONS OF THE CUBIC CONTINUED FRACTION BY MODULAR EQUATIONS OF DEGREE 3 REVISITED

Jinhee Yi ${ }^{\text {a }}$, Ji Won Ahn ${ }^{\mathrm{b}}$, Gang Hun Lee ${ }^{\mathrm{c}}$ and Dae Hyun Paek ${ }^{\text {d,* }}$

Abstract. We derive modular equations of degree 3 to find corresponding thetafunction identities. We use them to find some new evaluations of $G\left(e^{-\pi \sqrt{n}}\right)$ and $G\left(-e^{-\pi \sqrt{n}}\right)$ for $n=\frac{25}{3 \cdot 4^{m-1}}$ and $\frac{4^{1-m}}{3 \cdot 25}$, where $m=0,1,2$.

1. Introduction

Ramanujan's cubic continued fraction $G(q)$, for $|q|<1$, is defined by

$$
G(q)=\frac{q^{1 / 3}}{1}+\frac{q+q^{2}}{1}+\frac{q^{2}+q^{4}}{1}+\frac{q^{3}+q^{6}}{1}+\cdots
$$

In 1984, Ramanathan [12] found the value of $G\left(e^{-\pi \sqrt{10}}\right)$ by using Kronecker's limit formula. Andrews and Berndt [3] also evaluated $G\left(e^{-\pi \sqrt{1} 0}\right)$ by using Ramanujan's class invariants. In 1995, Berndt, Chan, and Zhang [6] evaluated $G\left(e^{-\pi \sqrt{n}}\right)$ for $n=2,10,22,58$ and $G\left(-e^{-\pi \sqrt{n}}\right)$ for $n=1,5,13,37$ by using Ramanujan's class invariants. Chan [7] evaluated $G\left(e^{-\pi \sqrt{n}}\right)$ for $n=\frac{2}{9}, 1,2,4$ and $G\left(-e^{-\pi \sqrt{n}}\right)$ for $n=1,5$ by using some reciprocity theorems for the cubic continued fraction,

In the 2000s, Adiga, Vasuki, and Mahadeva Naika [2] evaluated $G\left(e^{-2 \pi}\right)$ and $G\left(-e^{-\pi \sqrt{n}}\right)$ for $n=\frac{1}{3}, \frac{25}{3}, \frac{49}{3}, \frac{1}{75}, \frac{1}{147}$ by employing modular equations. Adiga, Kim, Mahadeva Naika, and Madhusudhan [1] also evaluated $G\left(-e^{-\pi \sqrt{n}}\right)$ for $n=\frac{1}{3}$, $\frac{1}{5}, \frac{1}{9}, \frac{1}{27}, 1,3,5$. Meanwhile, Yi [13] found the values of the cubic continued fraction as stated in Table 1.1 by using modular equations and some eta function identities

In the 2010s, Yi et al. [14] evaluated $G\left(e^{-\pi \sqrt{n}}\right)$ for $n=\frac{1}{3}, 1,4,9$ and $G\left(-e^{-\pi \sqrt{n}}\right)$ for $n=4,9$ by employing modular equations of degrees 3 and 9 . Paek and Yi [9]

[^0]derived some algorithms based on modular equations of degrees 3 and 9 to evaluate $G\left(e^{-\pi \sqrt{n}}\right)$ for $n=\frac{4}{3}, \frac{16}{3}, \frac{64}{3}, 36,81,144,324$ and $G\left(-e^{-\pi \sqrt{n}}\right)$ for $n=\frac{4}{3}, \frac{16}{3}, 36,81$. Paek and Yi [10] also showed systematic evaluations of $G\left(e^{-\pi \sqrt{n}}\right)$ and $G\left(-e^{-\pi \sqrt{n}}\right)$ for $n=4^{m}, \frac{1}{4^{m}}, 2 \cdot 4^{m}$ and $\frac{1}{2 \cdot 4^{m}}$, where m is a nonnegative integer. Furthermore, Paek, Shin, and Yi [11] evaluated $G\left(e^{-\pi \sqrt{n}}\right)$ and $G\left(-e^{-\pi \sqrt{n}}\right)$ for $n=\frac{2 \cdot 4^{m}}{3}, \frac{1}{3 \cdot 4^{m}}$, and $\frac{2}{3 \cdot 4^{m}}$, where $m=1,2,3,4$, by using modular equations of degrees 3 and 9 .

More recently, Yi and Paek [16] and Paek [8] used some theta-function identities to find some new evaluations of the cubic continued fraction. (See Table 1.1 for details). Table 1.1 shows some known values of n for $G\left(e^{-\pi \sqrt{n}}\right)$ and $G\left(-e^{-\pi \sqrt{n}}\right)$ in chronological order.

Table 1.1. Some known values of n for $G\left(e^{-\pi \sqrt{n}}\right)$ and $G\left(-e^{-\pi \sqrt{n}}\right)$

Refs	n for $G\left(e^{-\pi \sqrt{n}}\right)$	n for $G\left(-e^{-\pi \sqrt{n}}\right)$
[12]	10	
[6]	2, 10, 22, 58	1, 5, 13, 37
[7]	$\frac{2}{9}, 1,2,4$	1, 5
[13]	$\begin{aligned} & \frac{1}{2}, \frac{1}{3}, \frac{4}{3}, \frac{1}{4}, \frac{1}{9}, \frac{4}{9} \\ & 3,6,7,8,10,12,16,28 \end{aligned}$	$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{9}, 2,3,4,7$
[2]	4	$\frac{1}{3}, \frac{25}{3}, \frac{49}{3}, \frac{1}{75}, \frac{1}{147}$
[1]		$\frac{1}{3}, \frac{1}{5}, \frac{1}{9}, \frac{1}{27}, 1,3,5$
[14]	$\frac{1}{3}, 1,4,9$	4,9
[9]	$\frac{4}{3}, \frac{16}{3}, \frac{64}{3}, 36,81,144,324$	$\frac{4}{3}, \frac{16}{3}, 36,81$
[10]	$\begin{aligned} & \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{128}, \\ & 1,8,16,32,64,128,256 \end{aligned}$	$\begin{aligned} & \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{128} \\ & 8,16,32,64 \end{aligned}$
[11]	$\frac{8}{3}, \frac{32}{3}, \frac{128}{3}, \frac{1}{6}, \frac{1}{8}, \frac{1}{12}, \frac{1}{24}, \frac{1}{48}, \frac{1}{96}, \frac{1}{192}, \frac{1}{384}$	$\frac{8}{3}, \frac{32}{3}, \frac{1}{12}, \frac{1}{24}, \frac{1}{48}, \frac{1}{96}, \frac{1}{192}, \frac{1}{384}$
[16]	$\begin{aligned} & \frac{1}{5}, \frac{4}{5}, \frac{9}{5}, \frac{16}{5}, \frac{36}{5}, \frac{144}{5}, \frac{5}{9}, \frac{20}{9}, \frac{80}{9}, \frac{1}{27}, \frac{4}{27}, \frac{16}{27}, \\ & \frac{1}{45}, \frac{4}{45}, \frac{16}{45}, \\ & 5,20,27,45,48,80,108,180,432,720 \end{aligned}$	$\begin{aligned} & \frac{4}{5}, \frac{9}{5}, \frac{36}{5}, \frac{5}{9}, \frac{20}{9}, \frac{1}{45}, \frac{4}{45}, \\ & 20,27,45,180 \end{aligned}$
[8]	$\begin{aligned} & \frac{3}{2}, \frac{2}{3}, \frac{5}{3}, \frac{20}{3}, \frac{15}{4}, \frac{3}{5}, \frac{12}{5}, \frac{3}{8}, \frac{1}{15}, \frac{4}{15}, \frac{3}{20}, \frac{2}{27}, \\ & \frac{5}{27}, \frac{8}{27}, \frac{20}{27}, \frac{1}{54}, \frac{1}{60}, \frac{5}{108}, \frac{1}{135}, \frac{4}{135}, \frac{1}{216}, \frac{1}{540}, \\ & 15,24,60 \end{aligned}$	$\begin{aligned} & \frac{3}{2}, \frac{2}{3}, \frac{5}{3}, \frac{20}{3}, \frac{15}{4}, \frac{3}{5}, \frac{12}{5}, \frac{1}{6}, \frac{3}{8}, \frac{3}{20}, \\ & \frac{2}{27}, \frac{5}{27}, \frac{8}{27}, \frac{20}{27}, \frac{1}{54}, \frac{1}{60}, \frac{5}{108}, \frac{1}{135}, \\ & \frac{4}{135}, \frac{1}{216}, \frac{1}{540}, 6,15,24,60 \end{aligned}$

In this paper, we first derive modular equations of degree 3 to evaluate to find some theta-function identities. We then use them to find some new evaluations of the cubic continued fraction.

Ramanujan's theta function $\psi(q)$, for $|q|<1$, is defined by

$$
\psi(q)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}
$$

For any positive real numbers k and n, define $l_{k, n}$ and $l_{k, n}^{\prime}$ by

$$
l_{k, n}=\frac{\psi(-q)}{k^{1 / 4} q^{(k-1) / 8} \psi\left(-q^{k}\right)} \quad \text { and } \quad l_{k, n}^{\prime}=\frac{\psi(q)}{k^{1 / 4} q^{(k-1) / 8} \psi\left(q^{k}\right)}
$$

where $q=e^{-\pi \sqrt{n / k}}$. Note that the following property of $l_{k, n}$ in [15] will be useful for evaluating the cubic continued fraction later on

$$
\begin{equation*}
l_{k, \frac{1}{n}}=l_{k, n}^{-1} \tag{1.1}
\end{equation*}
$$

Note also the following formulas for $G^{3}\left(e^{-\pi \sqrt{n / 3}}\right)$ and $G^{3}\left(-e^{-\pi \sqrt{n / 3}}\right)$ in terms of $l_{3, n}^{\prime}$ and $l_{3, n}$, respectively, in $[15$, Theorem $6.2(\mathrm{ii})$ and (v)] such as

$$
\begin{equation*}
G^{3}\left(e^{-\pi \sqrt{n / 3}}\right)=\frac{1}{3 l_{3, n}^{\prime 4}-1} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{3}\left(-e^{-\pi \sqrt{n / 3}}\right)=\frac{-1}{3 l_{3, n}^{4}+1} \tag{1.3}
\end{equation*}
$$

For brevity, we write l_{n} and l_{n}^{\prime} for $l_{3, n}$ and $l_{3, n}^{\prime}$, respectively.

2. Modular Equations

In this section, we derive modular equations of degree 3 to establish relations between $l_{n}, l_{25 n}, l_{n}^{\prime}$, and $l_{25 n}^{\prime}$.

Lemma 2.1 ([5], Entry 11, Chapter 20). Let α, β, γ, and δ be of the first, third, fifth, and fifteenth degrees, respectively. Let m be the multiplier connecting α and β, and let m^{\prime} be the multiplier relating γ and δ. Let t be such that $m^{\prime}=m t^{2}$. Then,

$$
\begin{array}{rlrl}
\text { (i) } \begin{aligned}
\alpha & =\frac{(m-1)(3+m)^{3}}{16 m^{3}},
\end{aligned} & \beta=\frac{(m-1)^{3}(3+m)}{16 m} \\
\gamma & =\frac{\left(m^{\prime}-1\right)\left(3+m^{\prime}\right)^{3}}{16 m^{\prime 3}}, & \delta & =\frac{\left(m^{\prime}-1\right)^{3}\left(3+m^{\prime}\right)}{16 m^{\prime}} \\
1-\alpha & =\frac{(m+1)(3-m)^{3}}{16 m^{3}}, & 1-\beta & =\frac{(m+1)^{3}(3-m)}{16 m} \\
1-\gamma & =\frac{\left(m^{\prime}+1\right)\left(3-m^{\prime}\right)^{3}}{16 m^{\prime 3}}, & 1-\delta=\frac{\left(m^{\prime}+1\right)^{3}\left(3-m^{\prime}\right)}{16 m^{\prime}}
\end{array}
$$

(ii) $\left(1+\frac{1}{t}\right)^{5}(1-t)=\left(m^{2}-1\right)\left(9 m^{\prime-2}-1\right)$,

$$
\left(1+\frac{1}{t}\right)(1-t)^{5}=\left(m^{\prime 2}-1\right)\left(9 m^{-2}-1\right)
$$

(iii) $m^{2}+\frac{9}{m^{2} t^{4}}=\frac{t^{6}+5 t^{5}+5 t^{4}-5 t^{2}+5 t-1}{t^{5}}$,
(iv) $2 t^{5} m^{2}=t^{6}+5 t^{5}+5 t^{4}-5 t^{2}+5 t-1-4 t^{2}\left(t^{2}+2 t-1\right) R S$,
and
(v) $\left(\frac{\beta \delta(1-\beta)(1-\delta)}{\alpha \gamma(1-\alpha)(1-\gamma)}\right)^{1 / 4}=\frac{(R-S)^{6}}{\left(t^{-1}-t\right)^{3}}$,
where

$$
4 t^{2} R^{2}=t^{4}+t^{3}+2 t^{2}-t+1 \quad \text { and } \quad 4 t^{2} S^{2}=t^{4}+5 t^{3}+2 t^{2}-5 t+1
$$

Theorem 2.2. If $P=\frac{\psi(-q)}{q^{1 / 4} \psi\left(-q^{3}\right)}$ and $Q=\frac{\psi\left(-q^{5}\right)}{q^{5 / 4} \psi\left(-q^{15}\right)}$, then

$$
\begin{equation*}
(P Q)^{2}+\left(\frac{3}{P Q}\right)^{2}=\left(\frac{Q}{P}\right)^{3}-5\left(\frac{Q}{P}\right)^{2}+5\left(\frac{Q}{P}-\frac{P}{Q}\right)-5\left(\frac{P}{Q}\right)^{2}-\left(\frac{P}{Q}\right)^{3} \tag{2.1}
\end{equation*}
$$

Proof. Let α, β, γ, and δ be of degrees $1,3,5,15$, respectively. Let m and m^{\prime} be the multipliers as in Lemma 2.1. Then, by [5, Entry 11(ii), Chapter 17],

$$
P=\sqrt{m}\left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)}\right)^{1 / 8} \quad \text { and } \quad Q=\sqrt{m^{\prime}}\left(\frac{\gamma(1-\gamma)}{\delta(1-\delta)}\right)^{1 / 8} .
$$

Thus

$$
\frac{P}{Q}=\sqrt{\frac{m^{\prime}}{m}}\left(\frac{\alpha \delta(1-\alpha)(1-\delta)}{\beta \gamma(1-\beta)(1-\gamma)}\right)^{1 / 8}
$$

By Lemma 2.1(i) and (ii), it follows that

$$
\frac{P}{Q}=\frac{1}{t}\left(\frac{\left(9 m^{-2}-1\right)\left(m^{\prime 2}-1\right)}{\left(m^{2}-1\right)\left(9 m^{\prime-2}-1\right)}\right)^{1 / 4}=\frac{1-t}{1+t}
$$

or equivalently

$$
t=\frac{Q-P}{P+Q} .
$$

We are now in position to complete the proof of (2.1). By Lemma 2.1(v),

$$
(P Q)^{2}=m m^{\prime}\left(\frac{\alpha \gamma(1-\alpha)(1-\gamma)}{\beta \delta(1-\beta)(1-\delta)}\right)^{1 / 4}=m^{2} t^{2} \frac{\left(t^{-1}-t\right)^{3}}{(R-S)^{6}} .
$$

Thus, by Lemma 2.1(iii), (iv), and (v),

$$
\begin{aligned}
&(P Q)^{2}+\left(\frac{3}{P Q}\right)^{2} \\
&= \frac{m^{2}\left(1-t^{2}\right)^{3}}{t(R-S)^{6}}+\frac{9 t(R-S)^{6}}{m^{2}\left(1-t^{2}\right)^{3}} \\
&= \frac{m^{2} t^{5}(R+S)^{6}}{\left(1-t^{2}\right)^{3}}+\frac{9 t(R-S)^{6}}{m^{2}\left(1-t^{2}\right)^{3}} \\
&= \frac{t}{\left(1-t^{2}\right)^{3}}\left(m^{2} t^{4}+\frac{9}{m^{2}}\right)\left(R^{6}+15 R^{4} S^{2}+15 R^{2} S^{4}+S^{6}\right) \\
&+\frac{t}{\left(1-t^{2}\right)^{3}}\left(m^{2} t^{4}-\frac{9}{m^{2}}\right)\left(6 R^{5} S+20 R^{3} S^{3}+6 R S^{5}\right) \\
&= \frac{t}{\left(1-t^{2}\right)^{3}}\left(m^{2} t^{4}+\frac{9}{m^{2}}\right)\left(R^{6}+15 R^{4} S^{2}+15 R^{2} S^{4}+S^{6}\right) \\
&+\frac{t}{\left(1-t^{2}\right)^{3}}\left(2 m^{2} t^{4}-\left(m^{2} t^{4}+\frac{9}{m^{2}}\right)\right)\left(6 R^{5} S+20 R^{3} S^{3}+6 R S^{5}\right) \\
&= \frac{t^{6}+5 t^{5}+5 t^{4}-5 t^{2}+5 t-1}{\left(1-t^{2}\right)^{3}}\left(R^{6}+15 R^{4} S^{2}+15 R^{2} S^{4}+S^{6}\right) \\
&-\frac{8 t^{2}\left(t^{2}+2 t-1\right)}{\left(1-t^{2}\right)^{3}} R^{2} S^{2}\left(3 R^{4}+10 R^{2} S^{2}+3 S^{4}\right) \\
&= \frac{2\left(5 t^{6}+16 t^{5}+25 t^{4}+16 t-5\right)}{\left(t^{2}-1\right)^{3}} \\
&= \frac{-P^{6}-5 P^{5} Q-5 P^{2} Q^{4}+5 P^{2} Q^{4}-5 P Q^{5}+Q^{6}}{P^{3} Q^{3}} \\
&=\left(\frac{Q}{P}\right)^{3}-5\left(\frac{Q}{P}\right)^{2}+5\left(\frac{Q}{P}-\frac{P}{Q}\right)-5\left(\frac{P}{Q}\right)^{2}-\left(\frac{P}{Q}\right)^{3} .
\end{aligned}
$$

The following result is an immediate consequence of the modular equation (2.1) and the definition of l_{n}.

Corollary 2.3. For every positive real number n, we have
(2.2) $\quad 3 l_{n}^{2} l_{25 n}^{2}+\frac{3}{l_{n}^{2} l_{25 n}^{2}}$

$$
=\left(\frac{l_{25 n}}{l_{n}}\right)^{3}-5\left(\frac{l_{25 n}}{l_{n}}\right)^{2}+5\left(\frac{l_{25 n}}{l_{n}}-\frac{l_{n}}{l_{25 n}}\right)-5\left(\frac{l_{n}}{l_{25 n}}\right)^{2}-\left(\frac{l_{n}}{l_{25 n}}\right)^{3} .
$$

Theorem 2.4. If $P=\frac{\psi(q)}{q^{1 / 4} \psi\left(q^{3}\right)}$ and $Q=\frac{\psi\left(q^{5}\right)}{q^{5 / 4} \psi\left(q^{15}\right)}$, then

$$
\begin{equation*}
(P Q)^{2}+\left(\frac{3}{P Q}\right)^{2}=\left(\frac{Q}{P}\right)^{3}+5\left(\frac{Q}{P}\right)^{2}+5\left(\frac{Q}{P}-\frac{P}{Q}\right)+5\left(\frac{P}{Q}\right)^{2}-\left(\frac{P}{Q}\right)^{3} \tag{2.3}
\end{equation*}
$$

Proof. Let $T=\frac{\psi(-q)}{q^{1 / 4} \psi\left(-q^{3}\right)}$ and $U=\frac{\psi\left(-q^{5}\right)}{q^{5 / 4} \psi\left(-q^{15}\right)}$. Then, by Theorem 2.2,

$$
(T U)^{2}+\left(\frac{3}{T U}\right)^{2}=\left(\frac{U}{T}\right)^{3}-5\left(\frac{U}{T}\right)^{2}+5\left(\frac{U}{T}-\frac{T}{U}\right)-5\left(\frac{T}{U}\right)^{2}-\left(\frac{T}{U}\right)^{3}
$$

Replace q by $-q$, then $(T U)^{2}, \frac{U}{T}$, and $\frac{T}{U}$ are converted into $-(P Q)^{2},-\frac{Q}{P}$, and $-\frac{P}{Q}$, respectively. Hence

$$
-(P Q)^{2}-\left(\frac{3}{P Q}\right)^{2}=-\left(\frac{Q}{P}\right)^{3}-5\left(\frac{Q}{P}\right)^{2}-5\left(\frac{Q}{P}-\frac{P}{Q}\right)-5\left(\frac{P}{Q}\right)^{2}+\left(\frac{P}{Q}\right)^{3}
$$

which is equivalent to the modular equation (2.2).
See [4, Theorem 2.1] for a different proof of Theorem 2.4.
The following result comes from the modular equation (2.2) and the definition of l_{n}^{\prime}.

Corollary 2.5. For every positive real number n, we have

$$
\begin{align*}
& 3 l_{n}^{\prime 2} l_{25 n}^{\prime 2}+\frac{3}{l_{n}^{\prime 2} l_{25 n}^{2}} \tag{2.4}\\
& =\left(\frac{l_{25 n}^{\prime}}{l_{n}^{\prime}}\right)^{3}+5\left(\frac{l_{25 n}^{\prime}}{l_{n}^{\prime}}\right)^{2}+5\left(\frac{l_{25 n}^{\prime}}{l_{n}^{\prime}}-\frac{l_{n}^{\prime}}{l_{25 n}^{\prime}}\right)+5\left(\frac{l_{n}^{\prime}}{l_{25 n}^{\prime}}\right)^{2}-\left(\frac{l_{n}^{\prime}}{l_{25 n}^{\prime}}\right)^{3} .
\end{align*}
$$

For brevity, we write l_{n} and l_{n}^{\prime} for $l_{3, n}$ and $l_{3, n}^{\prime}$, respectively.

3. Evaluations of l_{n} and l_{n}^{\prime}

Theorem 3.1. We have
(i) $l_{25}=\frac{1}{3}\left(4+\sqrt[3]{10}+\sqrt[3]{10^{2}}+3 \sqrt{5+2 \sqrt[3]{10}+\sqrt[3]{10^{2}}}\right)$,
(ii) $l_{\frac{1}{25}}=-\frac{1}{3}\left(4+\sqrt[3]{10}+\sqrt[3]{10^{2}}-3 \sqrt{5+2 \sqrt[3]{10}+\sqrt[3]{10^{2}}}\right)$.

Proof. For (i), let $n=1$ in (2.2) and set $l_{25}=x$. Using $l_{1}=1$ as in [15, Theorem 2.1(i)], we find that

$$
x^{6}-8 x^{5}+5 x^{4}-5 x^{2}-8 x-1=0 .
$$

Now putting $A=x-\frac{1}{x}$, we have

$$
A^{3}-8 A^{2}+8 A-16=0
$$

Solving this equation for A and using the fact that $A>0$, we deduce that

$$
A=\frac{2}{3}\left(4+\sqrt[3]{10}+\sqrt[3]{10^{2}}\right)
$$

Thus rewriting the last equation in terms of x, we have

$$
x^{2}-\frac{2}{3}\left(4+\sqrt[3]{10}+\sqrt[3]{10^{2}}\right) x-1=0
$$

Solving the last equation for x and using the fact that $x>0$, we complete the proof with the help of Mathematica.

For (ii), use the identity $l_{\frac{1}{25}}=l_{25}^{-1}$ as in [14, Theorem 2.1 (ii)] to complete the proof.

See [15, Theorem 4.9(viii)] for a different proof of Theorem 3.1(i).
We recall the following theta-function identities to find some more values of l_{n} and l_{n}^{\prime}.

Lemma 3.2 ([11], Corollaries 3.2, 3.4). For any positive real number n, we have
(i) $l_{n}^{\prime 4}\left(\sqrt{3} l_{4 n}^{\prime 2}-1\right)=l_{4 n}^{\prime 2}\left(l_{4 n}^{\prime 2}+\sqrt{3}\right)$,
(ii) $l_{n}^{4}\left(\sqrt{3} l_{4 n}^{\prime 2}+1\right)=l_{4 n}^{\prime 2}\left(l_{4 n}^{\prime 2}-\sqrt{3}\right)$.

Note that Lemma 3.2(i) and (ii) follow from the modular equations $P^{4}\left(Q^{2}-1\right)=$ $Q^{2}\left(Q^{2}+3\right)$ with $P=\frac{\psi(q)}{q^{1 / 4} \psi\left(q^{3}\right)}, Q=\frac{\psi\left(q^{2}\right)}{q^{1 / 2} \psi\left(q^{6}\right)}$ and $P^{4}\left(Q^{2}+1\right)=Q^{2}\left(Q^{2}+3\right)$ with $P=\frac{\psi(-q)}{q^{1 / 4} \psi\left(-q^{3}\right)}, Q=\frac{\psi\left(q^{2}\right)}{q^{1 / 2} \psi\left(q^{6}\right)}$, respectively.

We are in position to evaluate $l_{\frac{25}{4^{m-1}}}^{\prime}$ for $m=0,1,2$.
Theorem 3.3. We have
(i) $l_{100}^{4}=\frac{1}{3}\left(a-1+\sqrt{a^{2}-4}\right)^{2}$,
(ii) $l_{25}^{\prime 4}=\frac{a^{2}-4+(a-1) \sqrt{a^{2}-4}}{3(a-2)}$,
(iii) $l_{\frac{25}{4}}^{\prime 4}=1-\frac{(a+5) \sqrt{a-2}+(a-1) \sqrt{a+2}}{3 \sqrt{a-2}-3 \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}$,
where

$$
a=\frac{5}{2}+\frac{1}{54}\left(4+\sqrt[3]{10}+\sqrt[3]{10^{2}}+3 \sqrt{5+2 \sqrt[3]{10}+\sqrt[3]{10^{2}}}\right)^{4}
$$

Proof. For (i), first note that $a=\frac{5}{2}+\frac{3}{2} l_{25}^{4}$. Letting $n=25$ in Lemma 3.2(ii) and setting $x=l_{100}^{\prime}$, we deduce that

$$
3 x^{4}-2 \sqrt{3}(a-2) x^{2}-2 a+5=0 .
$$

Solving the last equation for x and using $x>0$, we complete the proof.
For (ii), let $n=25$ in Lemma 3.2(i) and let putting the value of l_{100}^{\prime} obtained in part (i), and using $l_{25}^{\prime}>0$, we complete the proof.

The proof of (iii) is similar to that of (ii).
Note that $l_{\frac{25}{4}}^{14}$ in Theorem 3.3(ii) can be evaluated by using the value of $l_{1}^{\prime 4}=2+\sqrt{3}$ in [14, theorem 4.3(i)] and (2.4), but the evaluation is more complicated.

Theorem 3.4. Let a be as in Theorem 3.3. Then we have
(i) $l_{\frac{25}{4}}^{4}=-1+\frac{(a+5) \sqrt{a-2}+(a-1) \sqrt{a+2}}{3 \sqrt{a-2}+3 \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}$,
(ii) $l_{\frac{4}{25}}^{4}=\frac{3 \sqrt{a-2}+3 \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}{(a+2) \sqrt{a-2}+(a-1) \sqrt{a+2}-3 \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}$.

Proof. For (i), let $n=\frac{25}{4}$ in Lemma 3.2(ii) and put the value of l_{25}^{\prime} in Theorem 3.3(ii), then we complete the proof. The proof of (ii) follows from (1.1) and (i).

We now evaluate $l_{\frac{41-m}{25}}^{\prime}$ for $m=0,1,2$.
Theorem 3.5. Let a be as in Theorem 3.3. Then we have
(i) $l_{\frac{4}{25}}^{\prime 4}=3\left(\frac{a-1+\sqrt{a^{2}-4}}{2 a-5}\right)^{2}$,
(ii) $l_{\frac{1}{25}}^{\prime 4}=\frac{3\left(a^{2}-4+(a-1) \sqrt{a^{2}-4}\right)}{(a+2)(2 a-5)}$,
(iii) $l_{\frac{1}{100}}^{l^{4}}=1-\frac{3(a-1) \sqrt{a-2}+(5 a-11) \sqrt{a+2}}{(2 a-5) \sqrt{a+2}-3 \sqrt{2 a-5} \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}$.

Proof. For (i), first note that a satisfies $l_{\frac{4}{25}}^{4}=\frac{3}{2 a-5}$. Letting $n=\frac{1}{25}$ in Lemma 3.2(ii), putting the value of $l_{\frac{4}{25}}^{1}$ in terms of a, and setting $x=l_{\frac{4}{25}}^{\prime}$, we deduce that

$$
(2 a-5) x^{4}-2 \sqrt{3}(a-1) x^{2}-3=0 .
$$

Solving the last equation for x and using $x>0$, we complete the proof.

For (ii), letting $n=\frac{1}{25}$ in Lemma 3.2(i), putting the value of $l_{\frac{4}{25}}^{\prime}$ obtained in part (i), and using $l_{\frac{1}{25}}^{\prime}>0$, we complete the proof. The proof of (iii) is similar to that of (ii).

Theorem 3.6. Let a be as in Theorem 3.3. Then we have
(i) $l_{\frac{1}{100}}^{4}=-1+\frac{3(a-1) \sqrt{a-2}+(5 a-11) \sqrt{a+2}}{(2 a-5) \sqrt{a+2}+3 \sqrt{2 a-5} \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}$,
(ii) l_{100}^{4}

$$
=\frac{(2 a-5) \sqrt{a+2}+3 \sqrt{2 a-5} \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}{3(a-1) \sqrt{a-2}+3(a-2) \sqrt{a+2}-3 \sqrt{2 a-5} \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}} .
$$

Proof. For (i), let $n=\frac{1}{100}$ in Lemma 3.2(ii) and put the value of $l_{\frac{1}{25}}^{\prime}$ in Theorem 3.5 (ii), then we complete the proof. The proof of (ii) follows from (1.1) and (i).

4. Evaluations of $G(q)$

In this section, we first evaluate $G\left(e^{-\pi \sqrt{n}}\right)$ for $n=\frac{25}{3 \cdot 4^{m-1}}$ and $\frac{4^{1-m}}{3 \cdot 25}$, where $m=0$, $1,2$.

Theorem 4.1. Let a be as in Theorem 3.3. Then we have
(i) $G^{3}\left(e^{-\frac{10 \pi}{\sqrt{3}}}\right)=\frac{-(a+1)(a-2)+(a-1) \sqrt{a^{2}-4}}{8(a-2)}$,
(ii) $G^{3}\left(e^{-\frac{5 \pi}{\sqrt{3}}}\right)=-\frac{1}{4}\left((a+1)(a-2)-(a-1) \sqrt{a^{2}-4}\right)$,
(iii) $G^{3}\left(e^{-\frac{5 \pi}{2 \sqrt{3}}}\right)=\frac{-\sqrt{a-2}+\sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}{(a+3) \sqrt{a-2}+(a-1) \sqrt{a+2}+2 \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}$,
(iv) $G^{3}\left(e^{-\frac{2 \pi}{5 \sqrt{3}}}\right)=\frac{-(a+2)(7 a-13)+9(a-1) \sqrt{a^{2}-4}}{8(a+2)(2 a-5)}$,
(v) $G^{3}\left(e^{-\frac{\pi}{5 \sqrt{3}}}\right)=\frac{-(a+2)(7 a-13)+9(a-1) \sqrt{a^{2}-4}}{4(2 a-5)^{2}}$,
(vi) $G^{3}\left(e^{-\frac{\pi}{10 \sqrt{3}}}\right)$

$$
=\frac{-(2 a-5) \sqrt{a+2}+3 \sqrt{2 a-5} \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}{9(a-1) \sqrt{a-2}+(11 a-23) \sqrt{a+2}+6 \sqrt{2 a-5} \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}} .
$$

Proof. The proofs follow from Theorems 3.3, 3.5 and (1.2).

We end this section by evaluating $G\left(-e^{-\pi \sqrt{n}}\right)$ for $n=\frac{25}{3 \cdot 4^{m-1}}$ and $\frac{4^{1-m}}{3 \cdot 25}$, where $m=0,1,2$.

Theorem 4.2. Let a be as in Theorem 3.3. Then we have
(i) $G^{3}\left(-e^{-\frac{10 \pi}{\sqrt{3}}}\right)$

$$
=\frac{-(a-1) \sqrt{a-2}-(a-2) \sqrt{a+2}+\sqrt{2 a-5} \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}{(a-1) \sqrt{a-2}+(3 a-7) \sqrt{a+2}+2 \sqrt{2 a-5} \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}},
$$

(ii) $G^{3}\left(-e^{-\frac{5 \pi}{\sqrt{3}}}\right)=-\frac{1}{4}\left(1-6 \sqrt[3]{10}+3 \sqrt[3]{10^{2}}-3 \sqrt{-40+8 \sqrt[3]{10}+5 \sqrt[3]{10^{2}}}\right)$,
(iii) $G^{3}\left(-e^{-\frac{5 \pi}{2 \sqrt{3}}}\right)$

$$
=\frac{-\sqrt{a-2}-\sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}{(a+3) \sqrt{a-2}+(a-1) \sqrt{a+2}-2 \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}
$$

(iv) $G^{3}\left(-e^{-\frac{2 \pi}{5 \sqrt{3}}}\right)$

$$
=\frac{-(a+2) \sqrt{a-2}-(a-1) \sqrt{a+2}+3 \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}{(a+11) \sqrt{a-2}+(a-1) \sqrt{a+2}+6 \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}},
$$

(v) $G^{3}\left(-e^{-\frac{\pi}{5 \sqrt{3}}}\right)=-\frac{1}{4}\left(1-6 \sqrt[3]{10}+3 \sqrt[3]{10^{2}}+3 \sqrt{-40+8 \sqrt[3]{10}+5 \sqrt[3]{10^{2}}}\right)$,
(vi) $G^{3}\left(-e^{-\frac{\pi}{10 \sqrt{3}}}\right)$

$$
=\frac{-(2 a-5) \sqrt{a+2}-3 \sqrt{2 a-5} \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}}{9(a-1) \sqrt{a-2}+(11 a-23) \sqrt{a+2}-6 \sqrt{2 a-5} \sqrt{a^{2}-4+(a-1) \sqrt{a^{2}-4}}} .
$$

Proof. The results are immediate consequences of (1.3) and Theorems 3.1, 3.4, and 3.6.

See [2, Theorem 2.1] for a different proof of Theorem 4.2(ii).

References

1. C. Adiga, T. Kim, M. S. Mahadeva Naika \& H. S. Madhusudhan: On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions. Indian J. pure appl. Math. 35 (2004), no. 9, 1047-1062. https://doi.org/10.48550/arXiv.math/0502323
2. C. Adiga, K. R. Vasuki \& M. S. Mahadeva Naika: Some new explicit evaluations of Ramanujan's cubic continued fraction. New Zealand J. Math. 31 (2002), 109-114.
3. G. E. Andrews \& B. C. Berndt: Ramanujan's lost notebooks, Part I. Springer, 2000.
4. N. D. Baruah: Modular equations for Ramanujan's cubic continued fraction. J. Math. Anal. Appl. 268 (2002), 244-255. doi:10.1006/jmaa. 2001.7823
5. B. C. Berndt: Ramanujan's notebooks, Part III. Springer-Verlag, New York, 1991.
6. B. C. Berndt, H. H. Chan \& L.-C. Zhang: Ramanujan's class invariants and cubic continued fraction. Acta Arith. 73 (1995), 67-85. DOI:10.4064/aa-73-1-67-85
7. H. H. Chan: On Ramanujan's cubic continued fraction. Acta Arith. 73 (1995), 343-355. DOI:10.4064/aa-73-4-343-355
8. D. H. Paek: Evaluations of the cubic continued fraction by some theta function identities: Revisited. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 28 (2021), no. 1, 27-42. http://dx.doi.org/10.7468/jksmeb.2021.28.1.27
9. D. H. Paek \& J. Yi: On some modular equations and their applications II. Bull. Korean Math. Soc. 50 (2013), no. 4, 1211-1233. http://dx.doi.org/10.4134/BKMS. 2013.50.4.1221
10. D. H. Paek \& J. Yi: On evaluations of the cubic continued fraction by modular equations of degree 9. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 23 (2016), no. 3, 223-236. http://dx.doi.org/10.7468/jksmeb.2016.23.3.223
11. D. H. Paek, Y. J. Shin \& J. Yi: On evaluations of the cubic continued fraction by modular equations of degree 3. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 25 (2018), no. 1, 17-29. http://dx.doi.org/10.7468/jksmeb.2018.25.1.17
12. K. G. Ramanathan: On Ramanujan's continued fraction. Acta Arith. 43 (1984), 209226. DOI:10.4064/aa-43-3-209-226
13. J. Yi: The construction and applications of modular equations. Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2001.
14. J. Yi, M. G. Cho, J. H. Kim, S. H. Lee, J. M. Yu \& D. H. Paek: On some modular equations and their applications I. Bull. Korean Math. Soc. 50 (2013), no. 3, 761-776. http://dx.doi.org/10.4134/BKMS.2013.50.3.761
15. J. Yi, Y. Lee \& D. H. Paek: The explicit formulas and evaluations of Ramanujan's theta-function ψ. J. Math. Anal. Appl. 321 (2006), 157-181. doi:10.1016/j.jmaa. 2005.07.062
16. J. Yi \& D. H. Paek: Evaluations of the cubic continued fraction by some theta function identities. Korean J. Math. 27 (2019), no. 4, 1043-1059. https://doi.org/10. 11568/kjm.2019.27.4.1043
${ }^{\text {a}}$ Ph.D.: Department of Mathematics and Computer Science, Korea Science Academy of KAISt, Busan 47162, Korea
Email address: jhyi100@ksa.kaist.ac.kr
${ }^{\text {b }} 11$ th Grade High School Student: Korea Science Academy of KAist, Busan 47162, Korea
Email address: kevinjiwonahn@gmail.com
${ }^{\text {c }} 11$ th Grade High School Student: Korea Science Academy of KAISt, Busan 47162, Korea
Email address: hoithoitcat@naver.com
${ }^{\text {d Professor: }}$ Department of Mathematics Education, Busan National University of Education, Busan 47503, Korea
Email address: daehyunpaek@gmail.com

[^0]: Received by the editors October 11, 2023. Revised December 21, 2023. Accepted Dec. 23, 2023. 2020 Mathematics Subject Classification. Primary: 11F27, 33C90, Secondary: 11F20, 33C05, 33C75.
 Key words and phrases. continued fractions, modular equations, theta-function identities.
 *Corresponding author.

