• Title/Summary/Keyword: Modification paste

Search Result 26, Processing Time 0.027 seconds

Improvement of Solar Cell Efficiency by Modification of Cellulose Acetate Propionate for Ag paste (전극용 Ag Paste의 Cellulose Acetate Propionate(CAP) 개질에 따른 태양전지 효율 향상)

  • Kim, Dong Min;Lim, Jong Chan;Kim, Jin Hyun;Cha, Sang-Ho;Lee, Jong-Chan
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.227-234
    • /
    • 2018
  • We investigate the effect of the modification of cellulose acetate propionate as an organic vehicle for silver paste on solar cell efficiency. For the modification of cellulose acetate propionate, poly(ethylene glycol) is introduced to the hydroxyl groups of a cellulose acetate propionate backbone via esterification reaction. The chemical structure and composition of poly(ethylene glycol) functionalized cellulose acetate propionate is characterized by Attenuated total reflectance Fourier transform infrared, $^1H$ nuclear magnetic resonance, differential scanning calorimetry and thermogravimetric analysis. Due to the effect of structural change for poly(ethylene glycol) functionalized cellulose acetate propionate on the viscosity of silver paste, the solar cell efficiency increases from 18.524 % to 18.652 %. In addition, when ethylene carbonate, which has a structure similar to poly(ethylene glycol), is introduced to cellulose acetate propionate via ring opening polymerization, we find that the efficiency of the solar cell increases from 18.524 % to 18.622 %.

Physicochemical Properties of Modified Rice Powder for Rice-Based Infant Foods III -Acetylated-coss linkage treatment on rice powder (반고형 이유식의 개발을 위한 변형 쌀가루 제조 및 이화학적 특성 III - 초산-처리 쌀가루)

  • Choi, Jung-Sun;Sohn, Kyung-Hee;Choi, Hee-Sun
    • Journal of the Korean Society of Food Culture
    • /
    • v.12 no.5
    • /
    • pp.469-475
    • /
    • 1997
  • The modification of rice powder was attempted by treatment of acetic acid and epichlorohydrin to improve the functional properties of baby food. The initial gelatinization temperature of rice powder determined by amylograph was decreased from $79.5^{\circ}C$ to $63^{\circ}C$ by modification. The apparent and maxium viscosity of rice paste at $95^{\circ}C$ before and after modification were increased from 92B.U. to 236B.U. and from 100B.U. to 202B.U., respectively. The light transmittance of modified rice paste was increased from the temperature of $60^{\circ}C$ and by increasing the degree of substitution at the fixed temperature, while decrease more or less by the treatment of epichlorohydrin. The degree of retrogradation of the paste was decreased from 28.7 to 18.0 upon modification. The rate of syneresis of modified rice powder was decreased with increasing the drgree of substitution and ,the extend of epichlorohydrin treatment. Syneresis was not observed when acetylated rice powder whose DS value is 0.048 was treated with 0.25% of epichlorohydrin for the formation of cross-linkage. The addition of modified rice powder in preparation of semi-solid type infant food could improve the quality without lowering overall digestibility.

  • PDF

Changes in Pasting and Fluid Properties of Corn and Rice Starches after Physical Modification by Planetary Mill

  • Kim, Bum-Keun;Lee, Jun-Soo;Cho, Yong-Jin;Park, Dong-June
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.814-818
    • /
    • 2008
  • Com and rice starches were physically modified by planetary mill. While native starches showed high peak viscosities (1,001 and 563 cp), it decreased largely (42 and 20 cp for rice and com starch, respectively) after 2 hr of physical modification. When two starches were co-ground, peak viscosities decreased more largely than single ground one only in 30 min, indicating the pasting properties could be easily changed by co-grinding. Especially, the higher the amount of com starch, the viscosity decreased more largely, which means that paste stability could be controlled also by changing the ratio of com and rice starch. Mean particle size increased with physical modification time since particles became spread because of shear force. There were also changes in surface morphology after physical modification. Fluid property, such as mean time to avalanche (MTA), was improved (from $6.16{\pm}0.47$ and $8.37{\pm}1.23\;sec$ to $5.47{\pm}0.78$ and $5.26{\pm}1.37\;sec$ for rice and com starch, respectively) by physical modification. Pasting property, such as swelling power, was also improved by physical modification. These mean that native starches can be applied to both conventional powder and new paste-food industry more efficiently by physical modification.

A Study on the Coating Thickness of Surface Modified Aggregate by Using the Excess Paste Theory and Rheology Value (잉여 페이스트 이론과 레올로지 정수를 이용한 표면 개질골재의 피막두께 평가에 관한 연구)

  • Choi, Hee-Sup;Choi, Hyeong-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.23-29
    • /
    • 2019
  • This study applies to the surface modification technique by coating the surface of aggregates using the modified paste such as cementitious materials in order to develop completely recycling technology of coarse aggregate. In this case, coating thickness of modified aggregate can be considered that the decision is dependent on the viscosity and tenacity of modified paste. In this study identify the flow properties of the fresh modified paste, and examined for the coating thickness of modified aggregate. As a result, it was possible to design a quantitative coating thickness of modified paste assuming that a modified paste to a Bingham Fluid and consider by excess paste theory and rheology constant (yield value). Accordingly, it is considered that the quantitative mix design of concrete using by surface modified aggregates will be possible.

Characteristics of ${\alpha}$-Cyclodextrin Modified Carbon Paste Electrode (${\alpha}$-Cyclodextrin으로 화학수식된 Carbon Paste 전극의 특성)

  • Jeon, Young-Guk;Kim, Bong-Weon;Kim, Hee-Jung;Cho, Young-Dal;Chung, Chinkap
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.235-243
    • /
    • 1996
  • A carbon paste electrode were chemically modified using ${\alpha}$-cyclodextrin. Characteristics of chemically modified carbon paste electrodes were studied on the basis of the inclusion complex formation of ${\alpha}$-cyclodextrin and p-nitrophenol in solution. Cyclic voltammetry and differential pulse voltammetry were used to monitor the efficiency of the chemical modification. When the ${\alpha}$-cyclodextrin and carbon powder ratio of 2 : 1 in weight were used, the reduction peak current of p-nitrophenol was decreased almost completely, whereas those of o-nitrophenol and hydroquinone were not changed much. This result is due to the large difference in the inclusion complex formation constants of p-nitrophenol and the other probes with ${\alpha}$-cyclodextrin. Taking advantage of this difference, we can determine the concentration of o-nitrophenol even in the presence of p-nitrophenol.

  • PDF

Stress-Strain Behavior and Electrical Resistive of Conductive Silver Particle/Silicone Composite Pastes with Surface Modification (표면처리에 따른 도전성 은입자/실리콘 복합 페이스트의 응력-변형율 거동 및 전기비저항 특성)

  • 이건웅;방대석;박민;조동환
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.61-67
    • /
    • 2004
  • This paper reports the electrical conductivity and the stress-strain behavior of silver particle-filled silicone composite pastes for electromagnetic interference (EMI) shielding gasket materials. The percolation threshold (critical concentration) of the composite paste obtained by incorporating irregular sphere-shaped silver particles and room temperature vulcanizing (RTV) silicone resin was determined from the electrical conductivity result. At about 28 vol% Beading of untreated silver particles, the percolation phenomenon occurred and at this critical concentration, the volumetric resistivity, the tensile strength, and the elongation of the pastes were investigated. This work also suggests that the stress-strain characteristics of a composite paste filled with metal particles above the percolation threshold may be effectively improved by properly selecting a coupling agent.

Clinical In Vivo Bio Assay of Glucose in Human Skin by a Tattoo Film Carbon Nano Tube Sensor

  • Ly, Suw Young;Lee, Chang Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.595-601
    • /
    • 2017
  • In vivo assay of glucose detection was described using a skin tattoo film electrode (STF), and the probe was made from carbon nano tube paste modification film paper. Here in the square-wave stripping anodic working range obtained of $20-100mgL^{-1}$ within an accumulation time of 0 seconds only in sea water electrolyte solutions of pH 7.0. The relative standard deviations of 50 mg glucose that were observed of 0.14 % (n=12), respectively, using optimum stripping accumulation of 30 sec, the low detection limit (S/N) was pegged at 15.8 mg/L. The developed results can be applied to the detect of in vivo skin sensing in real time. Which confirms the results are usable for in vitro or vivo diagnostic clinical analysis.

The effects of calcium sulfate on periodontal ligament cells (Calcium sulfate제재가 치주인대세포에 미치는 영향)

  • Lee, Jun-Ho;Kim, So-Young;Choi, Seong-Ho;Chai, jung-Kiu;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.2
    • /
    • pp.235-247
    • /
    • 1998
  • Calcium sulfate has a long history of medical use as an implant material. The biocompatibiliry of the material has been clearly established. Bone ingrowth concomitant with resorption occurs rapidly with efficient conduction of bone from particle to particle. Calcium sulfate also has a potential for functioning as a good bamer membrane. The purpose of this study was to compare the biocompatibility of different types of calcium sulfate grafting materials including an expelimental calcium sulfate compound on periodontal ligament cells in vitro as a preliminary test towards the development of a more convenient and useful form of grafting material which could promote regeneration of periodontal tissue. Human periodontal ligament cells were collected from the premolar teeth extracted for orthodontic treatment. cells were cultured in a.MEM culture medium containing 20% FBS, at $37^{\circ}C$ and 100% humidity, in a 5% CO2 incubator. Cells were cultured into 96 well culture plate $1{\times}104$ cells per well with $\alpha$-MEM and incubated for 24 hours. After discarding the medium, those cells were cultured in $\alpha$-MEM contained with 10% FBS alone (control group), in medcal-grade calcium sulfate(MGCS group), in plaster(plaster group), experimental calcium sulfate paste(CS paste group) for 1, 2, 3 day respectively. And then each group was characterized by examining of the cell counting, MTI assay, collagen synthesis. The results \vere as follows. 1. In the analysis of cell proliferation by cell counting, both medical-grdde calcium sulfate group and plaster group showed no stastically significant difference at day 1, 2, 3 accept for plaster group at day 1 compared to control group, but there was stastically significant difference between CS paste group and all other groups at day 1, 2, 3(P<0.05). 2. In the analysis of cytotoxicity by MIT assay, both medical-grade calcium sJlfate group and plaster group showed no stastically significant difference compared to control group at day 1, 2, 3 but there was stastically significant difference between CS paste group and all other groups at day 1, 2, 3(P<0.OS). 3. In the analysis of collagen synthesis by immunoblotting assay, high level was detected for medical-grade calcium sulfate group and plaster group at day 1, 2, 3 compared to CS paste group. On the basis of these results, medical-grade calcium sulfate and plaster was shown to possess biocompatibility whereas the CS paste had unfavourable outcome. This observation shows a need for modification of the materials contained in calcium sulfate paste.

  • PDF

Modification of Physicochemical Properties of Arrowroot Starch by Heat-Moisture Treatment (수분-열처리에 따른 칡 전분의 물리화학적 성질)

  • Cha, Hwan-Soo;Kim, Kwan;Kim, Sung-Kon
    • Applied Biological Chemistry
    • /
    • v.27 no.4
    • /
    • pp.252-258
    • /
    • 1984
  • Physicochemical properties of arrowroot starch, which was adjusted to 18, 21, and 24% moisture and heated at $100^{\circ}C$ for 16hr, were investigated. X-ray diffraction pattern was changed from C- to A-pattern upon treatment(24% moisture). The swelling powere and solubility decreased by heat-moisture treatment. The treated sample was gelatinized at higher temperature than untreated one. Water-binding capacity was drastically increased as the moisture level was decreased. Amylograph hot paste viscosities were decreased upon treatment.

  • PDF

Surface Modification of Recycled Plastic Film-Based Aggregates for Use in Concrete (폐플라스틱 복합필름 기반 콘크리트용 골재의 표면 개질)

  • Kim, Tae Hun;Lee, Jea Uk;Hong, Jin-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.295-302
    • /
    • 2021
  • Surface modification of recycled plastic film-based aggregates is demonstrated to enhance the interaction between aggregates and cement paste. It is shown that the oxygen(O2) atmospheric pressure plasma(APP) treatment leads to a drastic increase in hydrophilicity. In case of the plasma treatment at 100W of RF power, 15/4sccm of O2/Ar flow rate and 30sec of discharging time, the water contact angle on the aggregates surface decreased from 104.5° to 44.0°. In addition, the contact angle of surface modified aggregates kept in air increased with time elapse. Improvement of hydrophilicity can be explained by the formation of new hydrophilic oxygen functional groups which is identified as C-OH, C-O-C, C=O, -COOH by X-ray photoelectron spectroscopy(XPS) analysis and Fourier-transform infrared spectroscopy(FT-IR). Therefore, it can be concluded that the plasma treatment process is an effective method to improve adhesion of the recycled plastic film-based aggregates and cement paste.