DOI QR코드

DOI QR Code

Improvement of Solar Cell Efficiency by Modification of Cellulose Acetate Propionate for Ag paste

전극용 Ag Paste의 Cellulose Acetate Propionate(CAP) 개질에 따른 태양전지 효율 향상

  • Kim, Dong Min (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Lim, Jong Chan (Daejoo Electronic Materials Co., LTD.) ;
  • Kim, Jin Hyun (Daejoo Electronic Materials Co., LTD.) ;
  • Cha, Sang-Ho (Department of Chemical Engineering, Kyonggi University) ;
  • Lee, Jong-Chan (Department of Chemical and Biological Engineering, Seoul National University)
  • Received : 2017.10.20
  • Accepted : 2018.03.20
  • Published : 2018.04.27

Abstract

We investigate the effect of the modification of cellulose acetate propionate as an organic vehicle for silver paste on solar cell efficiency. For the modification of cellulose acetate propionate, poly(ethylene glycol) is introduced to the hydroxyl groups of a cellulose acetate propionate backbone via esterification reaction. The chemical structure and composition of poly(ethylene glycol) functionalized cellulose acetate propionate is characterized by Attenuated total reflectance Fourier transform infrared, $^1H$ nuclear magnetic resonance, differential scanning calorimetry and thermogravimetric analysis. Due to the effect of structural change for poly(ethylene glycol) functionalized cellulose acetate propionate on the viscosity of silver paste, the solar cell efficiency increases from 18.524 % to 18.652 %. In addition, when ethylene carbonate, which has a structure similar to poly(ethylene glycol), is introduced to cellulose acetate propionate via ring opening polymerization, we find that the efficiency of the solar cell increases from 18.524 % to 18.622 %.

Keywords

References

  1. Solarnenergy, Metal Paste Technology and Market Forecast for Solar Cells (2010-2013) (in korean), Retrieved Sept 4, 2017 from www.solarnenergy.com
  2. Y. N. Ko, H. Y. Koo, J. H. Yi, J. H. Kim, and Y. C. Kang, J. Alloy. Compd., 490, 582 (2010). https://doi.org/10.1016/j.jallcom.2009.10.091
  3. R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Petrat, A. Prodi-Schwab, P. Lechner, and W. Hoffmann, Sol. Energy Mater. Sol. Cells, 90, 1680 (2006). https://doi.org/10.1016/j.solmat.2005.09.003
  4. J. Qin, S. Bai, W. Zhang, and Z. Liu, Circuit World, 42, 77 (2016). https://doi.org/10.1108/CW-07-2015-0032
  5. J. S. Jiang, J. E. Liang, H. L. Yi, S. H. Chen, and C. C. Hua, J. Polym. Res., 22, 144 (2015). https://doi.org/10.1007/s10965-015-0790-7
  6. C. P. Hsu, R. H. Guo, C. C. Hua, C. L. Shih, W. T. Chen, and T. I. Chang, J. Polym. Res., 20, 277 (2013). https://doi.org/10.1007/s10965-013-0277-3
  7. J. Qin, W. Zhang, Z. Liu, and S. Bai, Int. J. Mod. Phys. B, 29, 1540027 (2015). https://doi.org/10.1142/S0217979215400275
  8. S. B. Rane, P. K. Khnaan, T. Seth, G. J. Phatak, D. P. Amalnerkar, and B. K. Das, Mater. Chem. Phys., 82, 237 (2003). https://doi.org/10.1016/S0254-0584(03)00236-0
  9. S. Feng and C. Li, J. Agric. Food Chem., 63, 5732 (2015). https://doi.org/10.1021/acs.jafc.5b02534
  10. R. Ray, R. D. Jana, M. Bhadra, D. Maiti, and G. K. Lahiri, Chem. - Eur. J., 20, 15618 (2014). https://doi.org/10.1002/chem.201403786
  11. T. Hu, J. Yi, J. Xiao, and H. Zhang, Polym. J. (Tokyo, Jpn.), 42, 752 (2010). https://doi.org/10.1038/pj.2010.67
  12. F. J. Wang, Y. Y. Yang, X. Z. Zhang, X. Zhu, and T. S. Chung, Mater. Sci. Eng., C, 20, 93 (2002). https://doi.org/10.1016/S0928-4931(02)00018-8
  13. R. Wang, H. Mei, W. Ren, and Y. Zhang, RSC adv., 6, 107021 (2016). https://doi.org/10.1039/C6RA17129J
  14. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamaguchi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, IEEE J. Photovoltaics, 4, 1433 (2014). https://doi.org/10.1109/JPHOTOV.2014.2352151
  15. W. Ge, Y. Guo, H. Zhong, X. Wang, and R. Sun, Cellulose, 22, 2365 (2015). https://doi.org/10.1007/s10570-015-0663-6