DOI QR코드

DOI QR Code

Surface Modification of Recycled Plastic Film-Based Aggregates for Use in Concrete

폐플라스틱 복합필름 기반 콘크리트용 골재의 표면 개질

  • Kim, Tae Hun (Center for C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Jea Uk (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University) ;
  • Hong, Jin-Yong (Center for C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
  • 김태훈 (한국화학연구원 C1가스.탄소융합연구센터) ;
  • 이제욱 (경희대학교 정보전자신소재공학과) ;
  • 홍진용 (한국화학연구원 C1가스.탄소융합연구센터)
  • Received : 2021.08.10
  • Accepted : 2021.08.27
  • Published : 2021.09.30

Abstract

Surface modification of recycled plastic film-based aggregates is demonstrated to enhance the interaction between aggregates and cement paste. It is shown that the oxygen(O2) atmospheric pressure plasma(APP) treatment leads to a drastic increase in hydrophilicity. In case of the plasma treatment at 100W of RF power, 15/4sccm of O2/Ar flow rate and 30sec of discharging time, the water contact angle on the aggregates surface decreased from 104.5° to 44.0°. In addition, the contact angle of surface modified aggregates kept in air increased with time elapse. Improvement of hydrophilicity can be explained by the formation of new hydrophilic oxygen functional groups which is identified as C-OH, C-O-C, C=O, -COOH by X-ray photoelectron spectroscopy(XPS) analysis and Fourier-transform infrared spectroscopy(FT-IR). Therefore, it can be concluded that the plasma treatment process is an effective method to improve adhesion of the recycled plastic film-based aggregates and cement paste.

본 연구에서는 폐복합필름 기반 콘크리트용 골재와 시멘트 기재 간의 친화성 향상을 위한 골재표면 개질 연구를 수행하였다. 표면 개질은 산소 대기압 플라즈마 방법을 사용하였으며, 표면처리에 따른 골재표면 특성을 접촉각 측정기를 이용하여 관찰하였다. 그 결과 플라즈마 표면처리에 따른 접촉각은 처리시간과 반비례 관계를 가지며 104.5°에서 44.0°까지 감소하는 것을 확인하였으며, 플라즈마 처리 후 대기 중에 보관된 골재의 접촉각은 시간이 경과함에 따라 다시 증가하는 것을 알 수 있었다. 플라즈마 처리된 골재의 접촉각 감소는 X-ray 광전자 분광법 및 적외선 분광법 결과로부터 골재표면에 친수성 산소 작용기가 형성되었기 때문으로 판단되었다. 결과적으로, RF power 100W, O2 flow rate 15sccm, Ar flow rate 4sccm, 30초 동안 표면처리를 한 골재의 경우 가장 좋은 친수성 및 젖음성을 관찰할 수 있었으며, 산소 대기압 플라즈마는 골재와 시멘트 기재 간의 결합력을 증가시킬 수 있는 하나의 효과적인 방법임을 알 수 있었다.

Keywords

Acknowledgement

본 연구는 환경부의 재원으로 한국환경산업기술원의 생활폐기물 재활용 기술개발사업의 지원을 받아 수행되었습니다(2019002730004).

References

  1. Akcaozoglu, S., Atis, C.D., Akcaozoglu, K. (2010). An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete, Waste Management, 30(2), 285-290. https://doi.org/10.1016/j.wasman.2009.09.033
  2. Albano, C., Camacho, N., Hernandez, M., Matheus, A., Gutierrez, A. (2009). Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios, Waste Management, 29(10), 2707-2716. https://doi.org/10.1016/j.wasman.2009.05.007
  3. Al-Manaseer, A.A., Dalal, T.R. (1997). Concrete containing plastic aggregates, Concrete International, 19(8), 47-52.
  4. Epailard, F.P., Chevt, B., Brosse, J. C. (1994). Reactivity of a polypropylene surface modified in a nitrogen plasma, Journal of Adhesion Science and Technology, 8(4), 455-468. https://doi.org/10.1163/156856194X00339
  5. Ferreira, L., de Brito, J., Saikia, N. (2012). Influence of curing conditions on the mechanical performance of concrete containing recycled plastic aggregate, Construction and Building Materials, 36, 196-204. https://doi.org/10.1016/j.conbuildmat.2012.02.098
  6. Frigione, M. (2010). Recycling of PET bottles as fine aggregate in concrete, Waste Management, 30(6), 1101-1106. https://doi.org/10.1016/j.wasman.2010.01.030
  7. Geyer, R., Jambeck, J.R., Law, K.L. (2017). Production, use, and fate of all plastics ever made, Science advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
  8. Hannawi, K., Kamali-Bernard, S., Prince, W. (2010). Physical and mechanical properties of mortars containing PET and PC waste aggregates, Waste Management, 30(11), 2312-2320. https://doi.org/10.1016/j.wasman.2010.03.028
  9. Hannawi, K., Kamali-Bernard, S., Prince, W. (2010). Physical and mechanical properties of mortars containing PET and PC waste aggregates, Waste Management, 30(11), 2312-2320. https://doi.org/10.1016/j.wasman.2010.03.028
  10. Inagaki, N., Tasaka, S., Kawai, H., Yamada, Y. (1997). Surface modification of aromatic polyamide film by remote oxygen plasma, Journal of Applied Polymer Science, 64(5), 831-840. https://doi.org/10.1002/(SICI)1097-4628(19970502)64:5<831::AID-APP2>3.0.CO;2-Q
  11. Ismail, Z.Z., Al-Hashmi, E.A. (2008). Use of waste plastic in concrete mixture as aggregate replacement, Waste Management, 28(11), 2041-2047. https://doi.org/10.1016/j.wasman.2007.08.023
  12. Kan, A., Demirboga, R. (2009). A novel material for lightweight concrete production, Cement and Concrete Composites, 31(7), 489-495. https://doi.org/10.1016/j.cemconcomp.2009.05.002
  13. Kim, S.B., Yi, N.H., Kim, H.Y., Kim, J.H.J., Song, Y.C. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete, Cement and Concrete Composites, 32(3), 232-240. https://doi.org/10.1016/j.cemconcomp.2009.11.002
  14. Kou, S.C., Lee, G., Poon, C.S., Lai, W.L. (2009). Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes, Waste Management, 29(2), 621-628. https://doi.org/10.1016/j.wasman.2008.06.014
  15. Marzouk, O.Y., Dheilly, R.M., Queneudec, M. (2007). Valorization of post-consumer waste plastic in cementitious concrete composites, Waste Management, 27(2), 310-318. https://doi.org/10.1016/j.wasman.2006.03.012
  16. Naik, T.R., Singh, S.S., Huber, C.O., Brodersen, B.S. (1996). Use of post-consumer waste plastics in cement-based composites, Cement and Concrete Research, 26(10), 1489-1492. https://doi.org/10.1016/0008-8846(96)00135-4
  17. Panyakapo, P., Panyakapo, M. (2008). Reuse of thermosetting plastic waste for lightweight concrete, Waste Management, 28(9), 1581-1588. https://doi.org/10.1016/j.wasman.2007.08.006
  18. Saikia, N., De Brito, J. (2012). Use of plastic waste as aggregate in cement mortar and concrete preparation: a review, Construction and Building Materials, 34, 385-401. https://doi.org/10.1016/j.conbuildmat.2012.02.066
  19. Siddique, R., Khatib, J., Kaur, I. (2008). Use of recycled plastic in concrete: a review, Waste Management, 28(10), 1835-1852. https://doi.org/10.1016/j.wasman.2007.09.011
  20. Silva, R.V., de Brito, J., Saikia, N. (2013). Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates, Cement and Concrete Composites, 35(1), 23-31. https://doi.org/10.1016/j.cemconcomp.2012.08.017