Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.4.227

Improvement of Solar Cell Efficiency by Modification of Cellulose Acetate Propionate for Ag paste  

Kim, Dong Min (Department of Chemical and Biological Engineering, Seoul National University)
Lim, Jong Chan (Daejoo Electronic Materials Co., LTD.)
Kim, Jin Hyun (Daejoo Electronic Materials Co., LTD.)
Cha, Sang-Ho (Department of Chemical Engineering, Kyonggi University)
Lee, Jong-Chan (Department of Chemical and Biological Engineering, Seoul National University)
Publication Information
Korean Journal of Materials Research / v.28, no.4, 2018 , pp. 227-234 More about this Journal
Abstract
We investigate the effect of the modification of cellulose acetate propionate as an organic vehicle for silver paste on solar cell efficiency. For the modification of cellulose acetate propionate, poly(ethylene glycol) is introduced to the hydroxyl groups of a cellulose acetate propionate backbone via esterification reaction. The chemical structure and composition of poly(ethylene glycol) functionalized cellulose acetate propionate is characterized by Attenuated total reflectance Fourier transform infrared, $^1H$ nuclear magnetic resonance, differential scanning calorimetry and thermogravimetric analysis. Due to the effect of structural change for poly(ethylene glycol) functionalized cellulose acetate propionate on the viscosity of silver paste, the solar cell efficiency increases from 18.524 % to 18.652 %. In addition, when ethylene carbonate, which has a structure similar to poly(ethylene glycol), is introduced to cellulose acetate propionate via ring opening polymerization, we find that the efficiency of the solar cell increases from 18.524 % to 18.622 %.
Keywords
solar cell; efficiency; organic vehicle; cellulose acetate propionate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Petrat, A. Prodi-Schwab, P. Lechner, and W. Hoffmann, Sol. Energy Mater. Sol. Cells, 90, 1680 (2006).   DOI
2 J. Qin, S. Bai, W. Zhang, and Z. Liu, Circuit World, 42, 77 (2016).   DOI
3 J. S. Jiang, J. E. Liang, H. L. Yi, S. H. Chen, and C. C. Hua, J. Polym. Res., 22, 144 (2015).   DOI
4 C. P. Hsu, R. H. Guo, C. C. Hua, C. L. Shih, W. T. Chen, and T. I. Chang, J. Polym. Res., 20, 277 (2013).   DOI
5 J. Qin, W. Zhang, Z. Liu, and S. Bai, Int. J. Mod. Phys. B, 29, 1540027 (2015).   DOI
6 S. B. Rane, P. K. Khnaan, T. Seth, G. J. Phatak, D. P. Amalnerkar, and B. K. Das, Mater. Chem. Phys., 82, 237 (2003).   DOI
7 S. Feng and C. Li, J. Agric. Food Chem., 63, 5732 (2015).   DOI
8 R. Ray, R. D. Jana, M. Bhadra, D. Maiti, and G. K. Lahiri, Chem. - Eur. J., 20, 15618 (2014).   DOI
9 T. Hu, J. Yi, J. Xiao, and H. Zhang, Polym. J. (Tokyo, Jpn.), 42, 752 (2010).   DOI
10 F. J. Wang, Y. Y. Yang, X. Z. Zhang, X. Zhu, and T. S. Chung, Mater. Sci. Eng., C, 20, 93 (2002).   DOI
11 R. Wang, H. Mei, W. Ren, and Y. Zhang, RSC adv., 6, 107021 (2016).   DOI
12 K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamaguchi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, IEEE J. Photovoltaics, 4, 1433 (2014).   DOI
13 W. Ge, Y. Guo, H. Zhong, X. Wang, and R. Sun, Cellulose, 22, 2365 (2015).   DOI
14 Solarnenergy, Metal Paste Technology and Market Forecast for Solar Cells (2010-2013) (in korean), Retrieved Sept 4, 2017 from www.solarnenergy.com
15 Y. N. Ko, H. Y. Koo, J. H. Yi, J. H. Kim, and Y. C. Kang, J. Alloy. Compd., 490, 582 (2010).   DOI