• Title/Summary/Keyword: Modeling quality

Search Result 2,395, Processing Time 0.025 seconds

Water quality forecasting on upstream of chungju lake by flow duration (충주호 상류지역의 유황별 장래수질예측)

  • 이원호;한양수;연인성;조용진
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • In order to define about concern with discharge and water-quality, it is calculated drought flow, low flow, normal flow and wet flow in Chungju watershed from flow duration analysis. Water quality modeling study is performed for forecasting at upstream of Chungju lake. It is devided method of modeling into before and after the equipment of environmental treatment institution. And it is estimated the change of water quality. Before the equipment of environmental treatment, BOD concentration is increased from 23000 to 2006 years at all site and decrease on 2012 years. The rate of increasing BOD concentration is showed height between 2000 years and 2003 years most of all site. And after the equipment of environmental treatment, it is showed first grade of BOD water quality in most of sample site beside Jucheon river. The result of water quality modeling using drought flow showed that a lot of pollution occurred. And water quality using wet flow is good, so much discharge make more improve water quality than little discharge.

Causes of Fish Kill in the Urban Stream and Prevention Methods II - Application of Automatic Water Quality Monitoring Systen and Water Quality Modeling (도시 하천에서의 어류 폐사 원인 분석 II - 자동수질측정장치 및 수질모델의 사용)

  • Lee, Eun-hyoung;Seo, Dongil;Hwang, Hyun-dong;Yun, Jin-hyuk;Choi, Jae-hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.585-594
    • /
    • 2006
  • This study focused on the causes of fish kills and its prevention methods in Yudeung Stream, Daejeon, Korea. Intense field data, continuous water quality monitoring system and water quality modeling were applied to analyze the causes. Pollutant can be delivered to urban streams by surface runoff and combined sewer overflows in rainfall events. However, water quality analysis and water quality modeling results indicate that the abrupt fish kills in the Yudeung stream seems to be caused by combined effect of DO depletion, increase in turbidity and other toxic material. Excessive fish population in the study area may harm the aesthetic value of the stream and also has greater potential for massive fish kills. It is suggested to implement methods to reduce delivery of pollutants to the stream not only to prevent fish kills but also to keep balance of ecosystem including human uses. Frequent clean up of the urban surface and CSO, installation of detention basin will be helpful. In the long run, it seems combined sewer system has be replaced with separate sewer system for more effective pollutant removal in the urban area.

Numerical Study on the Impact of Meteorological Input Data on Air Quality Modeling on High Ozone Episode at Coastal Region (기상 입력 자료가 연안지역 고농도 오존 수치 모의에 미치는 영향)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Kim, Dong-Hyuk;Park, Soon-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.30-40
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of SST spatial distribution on the result of air quality modeling. Eulerian photochemical dispersion model CAMx (Comprehensive Air quality Model with eXtensions, version 4.50) was applied in this study and meteorological fields were prepared by RAMS (Regional Atmospheric Modeling System). Three different meteorological fields, due to different SST spatial distributions were used for air quality modeling to assess the sensitivity of CAMx modeling to the different meteorological input data. The horizontal distributions of surface ozone concentrations were analyzed and compared. In each case, the simulated ozone concentrations were different due to the discrepancies of horizontal SST distributions. The discrepancies of land-sea breeze velocity caused the difference of daytime and nighttime ozone concentrations. The result of statistic analysis also showed differences for each case. Case NG, which used meteorological fields with high resolution SST data was most successfully estimated correlation coefficient, root mean squared error and index of agreement value for ground level ozone concentration. The prediction accuracy was also improved clearly for case NG. In conclusion, the results suggest that SST spatial distribution plays an important role in the results of air quality modeling on high ozone episode at coastal region.

Air Quality Modeling of Ozone Concentration According to the Roughness Length on the Complex Terrain (복잡지형에서의 지표면 거칠기에 따른 오존 농도 수치모의)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Sung, Kyoung-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.430-439
    • /
    • 2007
  • The objective of this work is the air quality modeling according to the practical roughness length using the building information as surface boundary conditions. As accurate wind and temperature field are required to produce realistic urban air quality modeling, comparative simulations by various roughness length are discussed. The prognostic meteorological fields and air quality field over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model (MM5) and the Third Generation Community Multi-scale Air Quality Modeling System (Models-3/CMAQ), respectively. The simulated $O_3$ concentration on complex terrain and their interactions with the weak synoptic flow had relatively strong effects by the roughness length. A comparison of the three meteorological fields of respective roughness length reveals substantial localized differences in surface temperature and wind folds. Under these conditions, the ascended mixing height and weakened wind speed at night which induced the stable boundary stronger, and the difference of simulated $O_3$ concentration is $2{\sim}6\;ppb$.

Modeling Education for Improving CAD Model Applicability for Product Development Process (제품개발을 고려한 캐드모델의 응용성 향상을 위한 모델링교육)

  • Woo, Yoonhwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.42-47
    • /
    • 2016
  • The quality of CAD models affects the efficiency of the product development process. However, it seems that CAD modeling education in colleges simply focuses on the creation of CAD models without considering the quality or the applicability of the models. In this paper, we propose educational modeling approaches to help improve the quality and applicability of CAD models. These methods teach students to create models that include a rich set of information, facilitate downstream applications, and are precisely made with the fewest operations. A survey was carried out with students to validate these approaches.

Water Quality Modeling and Environmantal Capacity in the Seom River Basin (섬강유역 환경용량 및 수질 Modeling)

  • 허인량;오근찬;최지용
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.80-86
    • /
    • 1998
  • Seom River was major branch of Namhan river, consist of primary basin that Wonjoo-city, Hoingsung-gun and primary contamination source was sewage from human lives. This study was evaluated production contamination loading of each branch basin and water quality grade and water quality simulation by QUAL2E to provide efficient contaminations source control. Rusult of survey, production loading of BOD, T-N, T-P were 26,591 kg/day, 4,560 kg/day, 731 kg/day resectively. Water quality analysis in 17 points of main stream were appeared that 1st grade(BOD 1 mg/l under) was 6 point, 2nd grade was 9 point and 3rd grade was 2 point. And result of water quality analysis for branch steram, first grade was evaluated 68.7%. Based of field data, calibration and verification result were in good agreement with mesured value within coefficient of variance were from 2.59% to 18.73%, from 6.39%, to 28.46%, respectively.

  • PDF

Study on GIS based Automatic Delineation Method of Accurate Stream Centerline for Water Quality Modeling (GIS기반의 수질모델링 지원을 위한 정확도 높은 하천중심선의 자동 추출기법에 관한 연구)

  • Park, Yong-Gil;Kim, Kye-Hyun;Lee, Chol-Young
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.13-22
    • /
    • 2010
  • For implementing TMDL(Total Maximum Daily Loading) to adopt more effective management of water pollution, water quality modeling is pre-requisite and such modeling requires the extraction of stream centerline. The institutes responsible for the water quality modeling, however, generates the stream centerline with their own criteria and this lead to low accuracy of the extracted centerline as well as different modeling results for the same watershed. Therefore, this study mainly focused on the development of extraction method of the stream centerline. For that, an automated method has been developed through the integration of the centerline extraction method using a maximum inscribed circle with GIS. The result has shown that the newly developed method could enable to represent more details of the stream topography along with enhanced accuracy compared with conventional extraction method. Furthermore, the new method can afford centerline extraction for the island areas which has been the limitation of the conventional method thereby supporting water quality modeling in a detailed level.

Food quality management using sensory discrimination method based on signal detection theory and its application to drinking water (식품 품질관리를 위한 신호탐지이론(SDT) 감각차이식별분석 이론과 생수 품질관리에의 활용)

  • Kim, Min-A;Sim, Hye-Min;Lee, Hye-Seong
    • Food Science and Industry
    • /
    • v.52 no.1
    • /
    • pp.20-31
    • /
    • 2019
  • Sensory perception of food/beverage products is one of the most important quality factors to determine consumer acceptability and thus sensory discrimination methodology has been a vital tool for quality management. Signal detection theory(SDT) and Thurstonian modeling provide the most advanced psychometric approach to modeling various discrimination methods. In these theories, perceptual and cognitive decisional factors are considered so that, a fundamental measure of sensory difference (d') can be computed, independent of test methods used. In this paper, sensory discrimination analysis based on SDT and Thurstonian modeling is introduced for more accurate and systematic applications of sensory and hedonic quality management in industry. Ways to realize the statistical power and relative sensitivity of sensory discrimination methods theorized in SDT and Thurstonian modeling in practice, are also discussed by using a case study of the Nongshim quality management program for drinking water in which SDT A-Not A test methodology was further optimized.

Considerations in Space Allocation Methods of Emission from Area and Mobile Sources (면/이동오염원 배출량 공간 할당방식에 대한 고찰)

  • Kim, Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.697-703
    • /
    • 2002
  • In the present study, space allocation methods of pollutant emission from area and mobile sources are assessed by the actual application to air quality modeling of Pohang area. It is found that the TM-based modeling which allocates emission onto the 1km x 1km sized TM-grid system predicts almost the same mean ground-level concentration as that by the GIS-based modeling which uses geographical information of area and mobile sources directly, while maximum ground-level concentration by the TM-based modeling is predicted considerably lower than that by the GIS-based modeling. Moreover, the problem is found that the TM-based modeling causes deviation of mobile roads. In conclusion, it is anticipated to applying GIS-based modeling for a more accurate assessment of air quality in local scale.

Variational Data Assimilation for Optimal Initial Conditions in Air Quality Modeling

  • Park, Seon-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E2
    • /
    • pp.75-81
    • /
    • 2003
  • Variational data assimilation, which is recently introduced to the air quality modeling, is a promising tool for obtaining optimal estimates of initial conditions and other important parameters such as emission and deposition rates. In this paper. two advanced techniques for variational data assimilation, based on the adjoint and quasi-inverse methods, are tested for a simple air quality problem. The four-dimensional variational assimilation (4D-Var) requires to run an adjoint model to provide the gradient information in an iterative minimization process, whereas the inverse 3D-Var (I3D-Var) seeks for optimal initial conditions directly by running a quasi -inverse model. For a process with small dissipation, I3D-Vu outperforms 4D-Var in both computing time and accuracy. Hybrid application which combines I3D-Var and standard 4D-Var is also suggested for efficient data assimilation in air quality problems.