• 제목/요약/키워드: Model input parameter

Search Result 694, Processing Time 0.028 seconds

A combustion control modeling of coke oven by Swarm-based fuzzy system (스왐기반 퍼지시스템을 이용한 코크오븐 연소제어 모델링)

  • Ko, Ean-Tae;Hwang, Seok-Kyun;Lee, Jin-S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.493-495
    • /
    • 2005
  • This paper proposes a swarm-based fuzzy system modeling technique for coke oven combustion control diagnosis. The coke plant produces coke for the blast furnace plant in steel making process by charging coal into oven and supplying gas to carbonize it. A conventional mathematical model for coke oven combustion control has been used to control the amount of gas input, but it does not work well because of highly nonlinear feature of coke plant. To solve this problem, swarm-based fuzzy system modeling technique is suggested to construct a diagnosis model of coke oven combustion control. Based on the measured input-output data pairs, the fuzzy rules are generated and the parameters are tuned by the PSO(Particle Swarm Optimizer) to increase the accuracy of the fuzzy system is operated. This system computes the proper amount of gas input taking the operation conditions of coke oven into account, and compares the computed result with the supplied gas input.

  • PDF

Evaluation of Models for Estimating Shrinkage Stress in Patch Repair System

  • Kristiawan, Stefanus A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • Cracking of repair material due to restraint of shrinkage could hinder the intended extension of serviceability of repaired concrete structure. The availability of model to predict shrinkage stress under restraint condition will be useful to assess whether repair material with particular deformation properties is resistance to cracking or not. The accuracy in the prediction will depend upon reliability of the model, input parameters, testing methods used to characterize the input parameters, etc. This paper reviews a variety of models to predict shrinkage stress in patch repair system. Effect of creep and composite action to release shrinkage stress in the patch repair system are quantified and discussed. Accuracy of the models is examined by comparing predicted and measured shrinkage stress. Simplified model to estimate shrinkage stress is proposed which requires only shrinkage property of repair material as an input parameter.

Accurate Non-Quasi-Static Gate-Source Impedance Model of RF MOSFETs

  • Lee, Hyun-Jun;Lee, Seonghearn
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.569-575
    • /
    • 2013
  • An improved non-quasi-static gate-source impedance model including a parallel RC block for short-channel MOSFETs is developed to simulate RF MOSFET input characteristics accurately in the wide range of high frequency. The non-quasi-static model parameters are accurately determined using the physical input equivalent circuit. This improved model results in much better agreements between the measured and modelled input impedance than a simple one with a non-quasi-static resistance up to 40GHz, verifying its accuracy.

On Identification of Discrete System Expressed by Network Model (네트워크형 이산 시스템의 동정에 관하여)

  • 석상문;강기중;이철영
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.155-163
    • /
    • 2000
  • A discrete system has interpreted by using the network model, and PERT network is one of these methods. For the purpose of analysing the real system, it is necessary to measure the parameter of the real system. And system identification problem is to assume the parameter of a real system when we get to know the system model, the input data and output data. System identification method has been only developed to a system of which a structure has expressed a differential equation or a polynomial expression. But it has been scarcely developed yet in that case of network model. The aim of this paper is to examine a changes when new system is introduced to the present system. The changes are as follows : how the present system will be changed, when the changes will be happened. In this paper, genetic algorithm is used to assume the parameter.

  • PDF

Evaluation of Applicability and Hydrologic Parameter Calibration for HSPF Model using Expert System for HSPF (매개변수 보정 전문가시스템을 이용한 HSPF 모형의 수문 매개변수 보정 및 적용성 평가)

  • Kim, Sung Min;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.13-20
    • /
    • 2013
  • The purpose of this study was to evaluate the applicability of the HSPEXP expert system for the calibration of the Hydrological Simulation Program - Fortran (HSPF) for the study watershed. HSPEXP offers advice to the modeler, suggesting parameter changes that might result in better representation of a river basin and provides explanations supporting the recommended parameter changes. The study watershed, Sancheong, is located within the Nakdong River Basin and having the size of $1,072.4km^2$. Input data for the HSPF model were obtained from the landuse map, digital elevation map, meteorological data and others. Water flow data from 2006 to 2008 were used for calibration and from 2009 to 2010 were for validation. Using the HSPEXP expert system, hydrological parameters were adjusted based on total volume, then low flows, storm flows, and finally seasonal flows. For the calibration and validation period, all the HSPEXP model performance criteria were satisfied.

On Identification of discrete system expressed by Network Model (네트워크형 이산 시스템의 동정에 관하여)

  • 석상문;강기중;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.101-108
    • /
    • 1999
  • A discrete system has interpreted by using the network model, and PERT network is one of these methods. For the purpose of analysing the real system. it is necessary to measure the parameter of the real system. And system identification problem is to assume the parameter of a real system when we get to know the system model, the input data and output data. System identification method has been only developed to a system of which a structure has expressed a differential equation or a polynomial expression. But it has been scarcely developed yet in that case of network model. The aim of this paper is to examine a changes when new system isn introduced to the present system, The changes are as follows: how the present system will be changed, when the changes will be happened. In this paper, genetic algorithm is used to assume the parameter.

A state estimator design for servo system with delayed input (지연입력을 가진 서보시스템의 상태추정자 설계)

  • Kong, Jeong-Ja;Huh, Uk-Youl;Jeong, Kab-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.537-540
    • /
    • 1998
  • This thesis deals with the design problem of the state estimator for digital servo system. Digital servo system has input time delay, which depends on the size of control algorithm. The delayed input is a factor that brings out the state estimation error. So, in order to reduce this state estimation error of the system, we proposes a state estimator in which the delayed input of the system is considered. At first, a discrete-time state-space model is established accounting for the delayed input. Next, the state estimator is designed based on this model. we employ Kalman filter algorithm in design of the state estimator. The performance of proposed state estimator is exemplified via some simulations and experiment for servo system. And robustness of the proposed estimator to modelling error by variation of the system parameter is also shown in these simulations.

  • PDF

New Fuzzy Inference System Using a Kernel-based Method

  • Kim, Jong-Cheol;Won, Sang-Chul;Suga, Yasuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2393-2398
    • /
    • 2003
  • In this paper, we proposes a new fuzzy inference system for modeling nonlinear systems given input and output data. In the suggested fuzzy inference system, the number of fuzzy rules and parameter values of membership functions are automatically decided by using the kernel-based method. The kernel-based method individually performs linear transformation and kernel mapping. Linear transformation projects input space into linearly transformed input space. Kernel mapping projects linearly transformed input space into high dimensional feature space. The structure of the proposed fuzzy inference system is equal to a Takagi-Sugeno fuzzy model whose input variables are weighted linear combinations of input variables. In addition, the number of fuzzy rules can be reduced under the condition of optimizing a given criterion by adjusting linear transformation matrix and parameter values of kernel functions using the gradient descent method. Once a structure is selected, coefficients in consequent part are determined by the least square method. Simulated result illustrates the effectiveness of the proposed technique.

  • PDF

Identification of Three-Parameter Models from Step Response (스텝응답을 이용한 3매개변수 모델의 식별)

  • Ali, Mohammed Sowket;Lee, Jun-Sung;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1189-1196
    • /
    • 2010
  • This paper provides an identification method for three-parameter models i.e. first order with dead time models and second order with dead time models. The proposed identification method is based on step response and can be easily implemented using digital microprocessors. The proposed method first identifies the order of the plant i.e. first order or second order from the behavior of the plant with constant input. After the order of the plant is determined, a test step input is applied to the system and the three parameters of the plant are obtained from the corresponding response of the plant. The output of the plant need not to be zero when the test signal is applied. The efficacy of proposed algorithms is verified through simulation and experiment.

The Performance Degradation of Static Type Input Buffers due to Device Degradation (소자열화로 인한 Static 형 입력버퍼의 성능저하)

  • 김한기;윤병오
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.561-564
    • /
    • 1998
  • This paper describes a performance degradation of static type input buffer due to the device degradation in menory devices using $0.8\mu\textrm{m}$ CMOS process. experimental results shows that the degradation of MOS device affects the Trip Point shift in static type input buffer. We have performed the spice simulation and calculated the Trip Point with model parameter and measurement data so that how much the Trip Point(VLT) variate.

  • PDF