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Abstract: In this paper, we proposes a new fuzzy inference system for modeling nonlinear systems given input and output

data. In the suggested fuzzy inference system, the number of fuzzy rules and parameter values of membership functions are

automatically decided by using the kernel-based method. The kernel-based method individually performs linear transformation

and kernel mapping. Linear transformation projects input space into linearly transformed input space. Kernel mapping projects

linearly transformed input space into high dimensional feature space. The structure of the proposed fuzzy inference system is

equal to a Takagi-Sugeno fuzzy model whose input variables are weighted linear combinations of input variables. In addition,

the number of fuzzy rules can be reduced under the condition of optimizing a given criterion by adjusting linear transformation

matrix and parameter values of kernel functions using the gradient descent method. Once a structure is selected, coefficients

in consequent part are determined by the least square method. Simulated result illustrates the effectiveness of the proposed

technique.
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1. INTRODUCTION

A Fuzzy Inference System (FIS) has been shown powerful

capability for the modeling of nonlinear systems [1] [2]. FISs

can be directly obtained either from human experts using

knowledge experiments or learning machine methods using

numeric data. For complex and uncertain systems, FISs

based only on human experts may not lead to sufficient ac-

curacy. Because of this reason, neuro-fuzzy modeling which

acquires knowledge from a set of input-output data has been

actively investigated [3]. The important concerns of neuro-

fuzzy modeling for the real system are how to determine

proper the number of fuzzy rules and parameter values of

membership functions. To decide the number of fuzzy rules

from data is associated with how to partition input space.

There are usually two kinds of group methods. The first

one involves conventional partition. Though this partition

methods have good motivations, those have disadvantages

which include the curse of input dimensionality [5], the ex-

ponential increase in the number of rules [6], unpredictable

completeness [7] and computation cost [9]. The other one is

a clustering method. In clustering techniques, the number of

clusters must be known in advance [10], or previously settled

grid points of grid lines can be candidates for cluster centers

[4].

Recently kernel methods have popularly developed in clas-

sification and regression. Kernel techniques offer an alter-

native solution by mapping the data into high dimensional

feature space to increase the computational power. Partic-

ularly, Support Vector Machine (SVM)[11] has been used in

order to automatically find the number of network nodes or

fuzzy rules based on given error bound [13] [15] [17]. The

Support Vector Neural Network (SVNN) is proposed to se-

lect the best structure of radial based function network for

the given precision [13]. The SVM is suggested to improve

the simplified fuzzy inference system for the fuzzy neural

network [15]. The Support Vector Fuzzy Inference System is

proposed to find the reduced number of rules using gradient

descent method updating kernel parameters [17]. However,

because the general support vector learning methodology is

used in above all, they have computational complexity for

solving the quadratic problem in optimization process and

problem determining the type of kernel function correspond-

ing with nonlinear system.

In this paper, to overcome these drawbacks, we propose a

new fuzzy inference system using a kernel-based method.

The linear transformation of input variables is used to solve

problem determining the exact type of the kernel function.

Therefore input variables of the proposed FIS become in-

put variables of the Takagi-Sugeno (TS) fuzzy model which

are weighted linear combinations of the input variables. The

structure of fuzzy model is obtained using Feature Vector

Selection (FVS) [16] algorithm based on the kernel method.

Unlikely the SVM having computational complexity, the

FVS performs a simple computation optimizing a given cri-

terion into the feature space. The FVS algorithm is to select

a basis of the data subspace in feature space. A basis of

the data subspace is called a feature vector. Ultimately,

this feature vector becomes the center of the membership

function. Kernel functions mapping the linearly transformed

data into feature space become membership functions. In ad-

dition, the number of fuzzy rules can be reduced under the

condition of optimizing a given criterion by adjusting the

linear transformation matrix and parameter values of ker-

nel functions using the gradient descent method. Once a

structure is selected, coefficients in consequent part of the

modified TS fuzzy model are determined by the least square

method. So we can automatically determine the fuzzy model

using the iterative procedure which involves linear transfor-

mation, kernel mapping and FVS method under optimizing

a given criterion.
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Fig. 1. Nonlinear mapping.

The rest of this paper is organized as follows. General ker-

nel method and FVS algorithm are presented in Sect. 2.

The structure and learning algorithm of the new FIS using

a kernel-based method are given in Sect. 3. Simulated re-

sult of the proposed FIS is illustrated by example involving

benchmark nonlinear system in Sect. 4. Conclusion is given

in Sect. 5.

2. PRELIMINARIES

In this section, the reviews of the general kernel method and

the FVS algorithm are presented in order to understand a

kernel-based method.

2.1. Kernel method

Kernel method performs a nonlinear mapping which projects

input space into high dimensional feature space. Generally,

preprocessing step in learning machine contains representa-

tion of given input-output data [14]:

x = (x1, ..., xn) 7→ Φ(x) = (Φ1(x), ..., Φn(x)).

This step is equivalent to mapping the input space X into

a new space, F = {Φ(x)|x ∈ X}. Projecting the given data

into hypothesis space can not only increase computational

power in learning machine but also supply various methods

for extracting relevant information through new representa-

tion of data. The quantities introduced to describe the data

are called features. The work of selecting the best suitable

representation is known as the feature selection. The space

X is referred to as the input space, while F = {Φ(x)|x ∈ X}
is called the feature space [14].

Figure 1 shows an example of the nonlinear mapping which

projects the training data from input space to a higher-

dimensional feature space via Φ. In input space, data can

not be separated by linear function, instead of being able to

be in the feature space. Now, we will present the definition

and the characteristic of the kernel.

Definition 2..1: [14] A kernel is a function K, such that for all

x, z ∈ X

K(x, z) = < Φ(x) · Φ(z) > (1)

where Φ is a mapping from X to an (inner product) feature

space F.

Following Mercer’s theorem provides a characterization when

a function K(x, z) is a kernel.

Theorem 2..1: [14] Let X be a compact subset of R
n. Suppose

K is a continuous symmetric function such that the integral

operator Tk : L2(X) → L2(X),

Tkf(·) :=

∫

X

K(·,x)f(x)dx (2)

is positive. That is
∫

X×X

K(x, z)f(x)f(z)dxdz ≥ 0, (3)

for all f ∈ L2(X). Then we can expand K(x, z) in a

uniformly convergent series (on X × X) in terms of Tk’s

eigen-functions Φj ∈ L2(X), normalized in such a way that

‖Φj‖L2
= 1, and positive associated eigenvalue λj ≥ 0,

K(x, z) =
∞
∑

j=1

λjΦj(x)Φj(z). (4)

From these definition and theorem, we can summary kernel

function as follows,

K(x, z) =< Φ(x) · Φ(z) >=

∞
∑

i=1

λiΦi(x)Φi(z). (5)

An example in [11] gives brief understanding.

Example (Quadratic feature in R
2) Consider the map

Φ : R
2 → R

3 with

Φ(x) = Φ(x1, x2) = (x2
1,
√

2x1x2, x
2
2), (6)

where x1 and x2 ∈ R
2, for instance, the polynomial kernel

K(x,y) = (x · y)d. For d = 2, and x,y ∈ R
2, we have

(x · y)2 =

((

x1

x2

)

·
(

y1

y2

))2

,

=













x2
1√

2x1x2

x2
2






·







y2
1√

2y1y2

y2
2












,

= (Φ(x) · Φ(y)). (7)

Table 1 shows some kernel functions commonly used.

2.2. Feature vector selection

The FVS [16] is based on kernel method. The FVS technique

is to select feature vector being a basis of data subspace and

capturing the structure of the entire data into feature space

F.

The FVS for estimating the mapping φ̂i of any vector xi is

as follows:

φ̂i = ΦS · ai, (8)

where the mapping of each vector xi is noted φ(xi) = φi for

1 ≤ i ≤ M , the selected vectors xsj
into feature space F is

noted φ(xsj
) = φSj

for 1 ≤ j ≤ L, ΦS = {φSi
, ..., φSL

} is

the matrix of the selected vectors S = {xs1
, ..., xsL

} into F

and ai = [a1
i , ..., a

L
i ]T is the associated weight vector.

The feature vector is obtained from process finding the

weights vector ai. The weights vector is given by minimizing

the following normalized Euclidean distance in feature space.

δi =
‖φi − φ̂i‖2

‖φi‖2
. (9)



Table 1. Kernel function and type.

Kernel Function Type

K(x,y) = ((x · y) + 1)d Polynomial of degree d

K(x,y) = exp(− (x−y)2

2σ2 ) Gaussian RBF

K(x,y) = exp(− |x−y|

2σ2 ) Exponential RBF

K(x,y) = tanh(a(x · y) − b) Multi-layer perceptron

K(x,y) =
sin(N+ 1

2
)(x−y)

sin( 1

2
(x−y))

Fourier series

The minimum of Eq. (9) for a given S can be expressed over

all vector as follows:

min
S

∑

xi∈X

(

1 − Kt
siK

−1
ss Ksi

Kii

)

(10)

where Kss =< ΦS · ΦS > is a kernel function which is the

dot product of the selected vectors, Ksi =< ΦS · φi > is a

kernel function which is the dot product of between xi and

the selected vectors and Kii =< φi ·φi > is a kernel function

which is the dot product of xi.

The fitness function is defined as follows:

JS =
1

M

∑

xi∈X

(

Kt
siK

−1
ss Ksi

Kii

)

. (11)

Thus Eq. (11) can be written by

max
S

JS , (12)

where maxS JS is a value between 0 and 1 for xi ∈ S.

The FVS algorithm is an iterative process which performs

sequential forward selection until the fitness reaches a given

value.

3. NEW FUZZY INFERENCE SYSTEM

USING A KERNEL-BASED METHOD

This section describes the structure and learning algorithm

of a new fuzzy inference system using a kernel-based method.

3.1. The structure of the FIS using a kernel-based

method

The kernel-based method is that linear transformation is

added to kernel mapping in order to solve the problem se-

lecting the type of kernel function related to nonlinear sys-

tem, Thus input variables of the proposed FIS become input

variables of the TS fuzzy model which are weighted linear

combinations of original input variables.

Suppose we have given input and output data

(x1,y1), ..., (xl,yl) (13)

where xi=[xi
1, x

i
1, ..., x

i
D]T (i = 1, 2, ..., l) is original input

variable and Y =[y1, ...,yl]
T is output variable. The pro-

posed TS fuzzy model with fuzzy if-then rules can be repre-

sented by Eq. (14).

R1 : If x̄1 is K(x̄1, x̄
∗
11) and ... x̄D is K(x̄D, x̄

∗
1D),

Then f1 = a10 + a11x̄1 + ... + a1Dx̄D
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Fig. 2. The structure of the proposed fuzzy inference system.

R2 : If x̄1 is K(x̄1, x̄
∗
21) and ... x̄D is K(x̄D, x̄

∗
2D),

Then f2 = a20 + a21x̄1 + ... + a2Dx̄D

...
...

...

Rn : If x̄1 is K(x̄1, x̄
∗
n1) and ... x̄D is K(x̄D, x̄

∗
nD),

Then fn = an0 + an1x̄1 + ... + anDx̄D, (14)

where n is the number of fuzzy rules, D is the dimen-

sion of input variables, x̄j(j = 1, 2, ..., D) is a linearly

transformed input variable, fi is a local output variable,

K(x̄j , x̄
∗
ij)(i = 1, 2, ..., n, j = 1, 2, ..., D) is a fuzzy set and

aij(i = 1, 2, ..., n, j = 0, 1, ..., D) is a consequent parameter.

Linearly transformed input variables are defined as follows:
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(15)

where xi=[x̄i
1, x̄

i
2, ..., x̄

i
D]T (i=1, 2, ..., l) is a linearly trans-

formed input variable, and Ti=[ti1, ti2, ..., tiD](i = 1, 2, ..., D)

is the ith transformed direction unit vector of the original in-

put space.

Now, we describe the structure of FIS using a kernel-based

method. It consists of four layers as shown in Fig. 2.

The four layers involved in the proposed FIS are as follows:

Layer 1: Input space is projected into a linearly transformed

input space by a linearly transformation matrix.

xi = Txi, i = 1, 2, ..., l (16)

where T=[T1, T2, ..., TD]T is a linear transformation matrix.

Layer 2: Linearly transformed input space is nonlinearly

mapped into feature space by a map Φ.

xi = (x̄i
1, ..., x̄

i
D) 7→

Φ(xi) = (Φ1(xi), ..., ΦD(xi)), i = 1, 2, ..., l. (17)

Layer 3: Feature Vector (FV) is determined from a FVS

algorithm a using kernel method. Kernel method is
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Fig. 3. The learning algorithm of the proposed FIS.

a dot product which is computed with the nonlinear

mapped input Φ(x) = (Φ(x1), ..., Φ(xl)) and feature vec-

tor Φ(x∗
i ) =(Φ1(x

∗
i ), ..., ΦD(x∗

i ))(i = 1, ..., n), where x∗
i =

[x̄∗
i1, x̄

∗
i1, ..., x̄

∗
iD]T is the subset of the input x. Dot prod-

uct Φ(x) · Φ(x∗
i ) corresponds to evaluating kernel function

K(x,x∗
i ). The Gaussian kernel function with each variance

σi is used as follows:

K(x,x∗
i ) = exp

(

− (x − x∗
i )

2

2σ2
i

)

, i = 1, 2, ..., n (18)

where x∗
i is a FV, σi is called a kernel parameter and n is

the number of FVs. This kernel function become a Gaus-

sian membership function in the proposed FIS. x∗
i and σi is

respectively the center and the variance of the ith Gaussian

membership function. FVS algorithm is a fuzzy inference

engine determining the number of fuzzy rules in the FIS.

The Layer 1 to 3 are related to the premise part of the FIS.

Layer 4: For the overall output of the fuzzy model con-

structed, defuzzification using the Center Of Gravity (COG)

method is also performed.

f(x) =

∑n

i=1 K(x,x∗
i ) fi

∑n

j=1 K(x,x∗
j )

,

=
n
∑

i=1

βi (ai0 + ai1x̄1 + · · · + aiDx̄D) (19)

where βi =
K(x,x∗

i )
∑

n
j=1

K(x,x∗

j )
and fi = (ai0+ai1x̄1+· · ·+aiDx̄D).

It is assumed that K(x,x∗
i ) ≥ 0,

∑n

j=1 K(x,x∗
j ) > 0. There-

fore, 0 ≤ βi ≤ 1, (i = 1, 2, ..., n).

The Layer 4 connects with the consequence part of the FIS.

3.2. The learning algorithm of the FIS using a

kernel-based method

The learning algorithm of the FIS using a kernel-based

method is shown in Fig. 3. It can be achieved by the follow-

ing iterative procedure.

Step 1: Assign the desired fitness and initialize the linear

transformation matrix T and the kernel parameter σi.
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Step 2: Perform linear transformation in Eq.(16) in order to

project input space into linearly transformed input space.

Step 3: Using the following FVS algorithm based on kernel

mapping, find FVs x∗
i that are the centers ci of Gaussian

membership functions.

max
S

JS = max
S

1

M

∑

xi∈F

(

Kt
siK

−1
ss Ksi

Kii

)

. (20)

Step 4: Using the following Least Square Estimation (LSE)

method [1], estimate the parameter aij of the linear equation

fi in Eq. (19).

Let

A =
[

a10 a11 ... a1D ... an0 an1 ... anD

]T

, (21)

W =













β1
1 β1

1x1
1 ... β1

1x1
D ... β1

n β1
nx1

1 ... β1
nx1

D

β2
1 β2

1x2
1 ... β2

1x2
D ... β2

n β2
nx2

1 ... β2
nx2

D

...
... ...

... ...
...

... ...
...

βl
1 βl

1x
l
1 ... βl

1x
l
D ... βl

n βl
nxl

1 ... βl
nxl

D













(22)

where β
j
i =

K(xj ,x∗

i )
∑

n
k=1

K(x,x∗

k)
. Thus fuzzy model output is

f(x) = WA.

If (W T W ) is nonsingular, the parameter vector A is calcu-

lated by

A = (W T
W )−1

W
T
Y. (23)

Step 5: Using a Gradient Descent Method (GDM) [4], up-

date the kernel parameter σi such that error is minimized.
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Fig. 6. The structure of the FIS for the modeling of

F (x1, x2).

From the definition of the GDM,

∆σi = −ησ∇σi
E,

= −2ησσ
−3
i

l
∑

j=1

ejβ
j
i (fi − yj)‖xj − x∗

i ‖2 (24)

where ησ is the learning late of σi, ej = f(xj) − yj and

E =
∑l

j=1 e2
j .

Step 6: Also using the following GDM, update the linear

transformation matrix T and go to step 2 until error and

FVs are satisfied with given conditions.

∆T = −ηT∇T E,

= −2ηT

l
∑

j=1

ejxj

n
∑

i=1

β
j
i ,

[

Ai + ‖xj − x∗
i ‖σ−2

i (yj − fi)
]

(25)

where ηT is the learning late of T and Ai = [ai1, ..., aiD]T .

Figures 4 and 5 show input space partitioning methods of

two-dimensional input space. The former describes the in-

put space partitioning of the FVS method with the same

Gaussian variance. The latter presents that of the proposed

FIS using a kernel-based method with linear transformation

and different variances. Compared with the former having

five rules, Figure 5 with four rules shows that the number of

fuzzy rules can be reduced as determining the appropriate

linear transformation matrix and Gaussian variances using

a GDM.

4. EXMAPLE

In this section, we show simulation result of the proposed

FIS for the modeling of the typical nonlinear system.

To analyze the performance of the proposed FIS, the model-

ing error is defined by as following Root Mean Square Error

(RMSE)

E =

√

∑N

k=1(yk − f(xk))2

N
(26)

Table 2. Parameter values of the FIS for modeling of

F (x1, x2).

Rule
Premise part Consequent part

ci σi ( ai0, ai1, ai2 )

1 (2.4151, 2.4151) 3.3854 (270946,-18283, -10464)

2 (4.7757, 5.0076) 3.1297 (9966,-55,-373)

3 (1.2561, 4.5498) 3.0863 (-8620,623 ,484)

4 (4.3525, 1.5288) 3.1524 (-1059,1072,1133)

5 (1.2275, 1.5110) 3.3572 (-195313,-7695,-5205)
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Fig. 7. The modeling result of F (x1, x2).

where N is the number of data, yk and f(xk) are respectively

the system and the model output.

4.1. Example : modeling of 2-input nonlinear func-

tion

Consider the nonlinear function [2]

F (x1, x2) = (1 + x
−2
1 + x

−1.5
2 )2. (27)

From input ranges [1, 5]× [1, 5] of Eq. (27), 50 training data

pairs were obtained. The proposed FIS extracts the 5 FVs,

so that it has 5 rules as follows,

Ri : If x̄1 is K(x̄1, x̄
∗
i1) and x̄2 is K(x̄2, x̄

∗
i2),

Thenfi = ai0 + ai1x̄1 + ai2x̄2, i = 1, ..., 5. (28)

The structure of the FIS with 5 rules is shown in Fig. 6.

For given the fitness of maxS JS = 0.992 and the initial con-

dition of σi = 3.2, the linear transformation matrix T , the

center ci and the variance σi of the Gaussian membership

function in premise part and coefficients aij in consequence

part are obtained through learning procedure. The linear

transformation matrix is calculated as follows:

T =

[

0.9998 0.0001

0.0001 1.0002

]

. (29)

The parameter values of premise and consequent parts are

listed in Table 2. The method in the literature applied to the

same function F (x1, x2), and the results listed on the Table

3. Compared with the number of rules and modeling error



Table 3. Compared results of nonlinear function F (x1, x2).

Type Rules( or FVs) RMSE

Sugeno and Yasukawa [2] 6 0.281

Gomez-Skarmeta et al. [8] 5 0.266

Chan et al. [13] 6 0.324

Baudat et al. [16] 6 0.333

Kim et al. [17] 5 0.171

Proposed FIS 5 0.164

of others, the proposed method gives the smallest modeling

error. Figure 7 shows the modeling result of F (x1, x2) using

a kernel-based method.

5. CONCLUSION

In this paper, we have introduced a new fuzzy inference sys-

tem using a kernel-based method. Our main concern is to de-

termine the best structure of the TS fuzzy model for model-

ing nonlinear systems with measured input and output data.

The number of rules and the parameter values of membership

functions in the proposed FIS can be decided using an iter-

ative FVS based on kernel-based method. The kernel-based

method involves linear transform and kernel mapping. The

linear transformation matrix and parameter values of kernel

functions were adjusted using the gradient descent method.

Coefficients in consequent part of the TS fuzzy model were

determined by the least square method. Example showed

the effectiveness of the proposed FIS for the modeling of

nonlinear system.
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