• Title/Summary/Keyword: Model chamber

Search Result 1,012, Processing Time 0.027 seconds

A Experimental/Numerical Study of Behaviors of Spray Impinging on the Diesel Combustion Chamber Wall (디젤 연소실 벽면에 충돌하는 분무거동에 관한 실험적/수치적 연구)

  • 박정규;원석규;원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.86-95
    • /
    • 2000
  • A modified spray impingement model has been developed, which is assessed against experiments for the impinging sprays on the small combustion chamber at various gas pressures. To investigate spray behaviors in the diesel combustion chamber, a transparent constant-volume chamber is made which is similar to the combustion chamber of the real diesel engine. The chamber is pressurized by N2 gas from 0 bar to 20 bar to find the effects of ambient pressures. The behaviors of spray injected into this chamber and dispersed after impingement on the cylinder wall is measured two-dimensionally using laser sheet Mie scattering method. The physical submodels have been properly modified to improve the prediction capability of original KIVA code to describe the spray behaviors after impingement on the curved cylinder wall. In terms of spray dynamics and evolution. numerical results give qualitatively good agreements with experimental data.

  • PDF

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.

Fluid Flow and Temperature Distribution in the Simplified Chamber (단순화한 챔버에서 유체의 흐름과 온도분포)

  • Han Hyun-Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.302-308
    • /
    • 2005
  • The temperature distribution and fluid flow in the chamber was investigated using FLUENT code. It provides comprehensive modeling capabilities for a wide range of incompressible or compressible and laminar or turbulent fluid flow problems. And a broad range of mathematical models for transport phenomena is combined with the ability to model for complex geometries. The geometry of the chamber was very complex, and a simplified model of the chamber was used in the simulation experiment. It was important that the temperature deviation of test site. This datum were provided in the improving the control algorithm. Using this algorithm, the results were with in $0.1^{\circ}C.$

  • PDF

Evaluation of Exposure to Indoor Volatile Organic Compounds by Utilizing Emission Characteristics and Emission Factor of Household Mosquito Repellents (가정용 모기살충제의 배출 특성 및 배출계수를 이용한 실내 휘발성 유기화합물질 노출 평가)

  • Jo, Wan-Kuen;Lee, Jong-Hyo
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1123-1134
    • /
    • 2009
  • This study was designed to evaluate qualitatively and quantitatively the pollutant compositions, which were emitted from three types of mosquito repellents(MRs)(mat-, liquid-vaporized, and coil-type) by utilizing a 50-L environmental chamber. A qualitative analysis revealed that 42 compounds were detected on the gas chromatography/mass spectrometer system, and that the detection frequency depended upon chemical types. Nine of the 42 compounds exhibited a detection frequency of 100%. Four aromatic compounds(benzene, ethyl benzene, toluene, and xylene) were detected in all test MRs. The concentration equilibriums in the environmental chamber were achieved within 180 min after sample introduction. The coil-type MR represented higher chamber concentrations as compared with the mat- or liquid-vaporized-type MR, with respect to the target compounds except for naphthalene. In particular, the chamber concentrations of ethyl benzene, associated with the use of coil-type MR, were between 0.9 and $65\;mg\;m^{-3}$ whereas those of mat- and liquid-vaporized-type MRs we~e between 0.5 and $2.0\;mg\;m^{-3}$and 0.3 and $1.4\;mg\;m^{-3}$, respectively. However, naphthalene concentrations in the chamber, where a liquid-vaporized-type MR was placed, were measured as between 17.8 and $56.3\;mg\;m^{-3}$, but not detected in the chamber, where a mat- or coil-type MR was placed. The empirical model fitted well with the time-series concentrations in the environmental chamber(in most cases, determination coefficient, $R^2$ ≿ 0.9), thereby suggesting that the model was suitable for testing emissions. In regards to the target compounds except for benzene, although they were emitted from the MRs, health risk from individual exposure to them were estimated not to be significant when comparing exposure levels with no observed adverse exposure levels or lowest observed adverse exposure levels of corresponding compounds. However, it was concluded that the use of MRs could be an important indoor source as regards benzene.

An Experimental Study on Unsteady Heat Transfer of Spray-Impinging Plate in a Pressurized Chamber (가압 분무실내 스프레이 충돌판에서 나타나는 비정상 열전달 측정에 관한 연구)

  • Cho, Chang-Kwun;Lee, Yeol;Koo, Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.60-67
    • /
    • 2000
  • An experimental investigation on transient heat transfer phenomena of impinging diesel-spray on a flat plate in a pressurized chamber is carried out. A diesel spray is injected from a single-hole nozzle and impinges to a heated flat plate in the chamber. A fast-response thermocouple installed in the top surface of the plate measures the transient variation of surface temperature of the plate under various conditions of the chamber pressures. Utilizing the semi-infinite model, the temporal variation of the heat flux on the plate is determined. Effects of various parameters, such as vertical distances between the nozzle and the plate, radial distances from the injection-axis, and the chamber pressures, on the heat flux characteristics of impinging diesel-spray are studied.

Combustion Characteristics in a Constant Volume Combustion Chamber with Sub-Chamber (II) Effect of Combustion Promotion with Configuration Change of the Critical Passagehole (부실식 정적연소실내 연소특성에 관한 연구 (II) 임계연락공의 형상변화에 따른 연소촉진효과)

  • 김봉석;권철홍;류정인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2611-2623
    • /
    • 1993
  • To construct the design back data for a lean-burn gas engine, we investigated the combustion characteristics in the main chamber using a constant volume combustion chamber with subchamber. The combustion characteristics with configuration change of the critical passageholes have been studied by taking pressure data, schlieren photograph, ion current and light emission signal of flame. Heat release rate with various critical passageholes also have been analysed by using the combustion model of a prechamber diesel engine. It was found that combustion characteristics in the main combustion chamber were greatly influenced by the geometric configurations of critical passagehole.

A Study on the Development of 25.8kV 25kA Gas Circuit Breaker Using Thermal-Expansion Principle(II) (25.8kV 25kA 열팽창분사식 가스차단기 개발에 관한 연구(II) - 팽창실 용적이 차단성능에 미치는 영향 -)

  • Song, K.D.;Park, K.Y.;Shin, Y.J.;Kim, K.S.;Kim, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.80-82
    • /
    • 1996
  • This paper deals with the effects of the volume of thermal expansion chamber on the interrupting performance in thermal expansion type 25.8kV 25kA gas circuit breaker. Model interrupters with 5 type thermal expansion chamber were designed and manufactured. Short-circuit tests were carried out for those model interrupters with 25kA breaking current. Pressure rise in the expansion chamber were measured and compared with the calculated one which was obtained from a self-developed program in our team. The analysis on the interrupting performance of each model interrupter has been done on the base of the short-circuit test results.

  • PDF

A Study on the Variation of Ventilation Effect for Indoor Air Pollutants by Ventilation Hole Sites (환기구 위치별 실내오염물질의 환기효과 변동에 관한 연구)

  • Lee, Jeong Joo;Lee, Ju Sang;Kim, Shin Do
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.226-240
    • /
    • 1995
  • This research has a purpose to achieve experimental data used for design of ventilation systems necessary for indoor air quality control and their operation and management. For the study, spatial concentration distribution of indoor air quality according to pollutant site in a simplified model chamber. In low flow ventilation, flow pattern of indoor air was mainly influenced by diffusion and additionally, spatial distribution was formed by convection. Distribution of ventilation efficiency according to each pattern of model chamber was evaluated. It was confirmed that diffusion patterns of a pollutant among sites were formed, centering around main stream areas of supply and exhaust outlets.

  • PDF

Modeling and Control of an Electronic-Vacuum Booster for Vehicle Cruise Control

  • Lee, Chankyu;Kyongsu Yi
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1314-1319
    • /
    • 2002
  • A mathematical model and control laws for an Electronic-Vacuum Booster (EVB) for application to vehicle cruise control will be presented. Also this paper includes performance test result of EVB and vehicle cruise control experiments. The pressure difference between the vacuum chamber and the apply chamber is controlled by a PWM-solenoid-valve. Since the pressure at the vacuum chamber is identical to that of the engine intake manifold, the output of the electronic-vacuum booster Is sensitive to engine speed. The performance characteristics of the electronic-vacuum booster have been investigated via computer simulations and vehicle tests. The mathematical model of the electronic-vacuum booster developed in this study and a two-state dynamic engine model have been used in the simulations. It has been shown by simulations and vehicle tests that the EVB-cruise control system can provide a vehicle with good distance control performance in both high speed and low speed stop and go driving situations.

A Performance Simulation for Spark Ignition Wankel Rotary Engine (불꽃점화 반켈 로터리 기관의 성능 시뮬레이션)

  • 채재우;이상만;전영남;김규정;정영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.80-89
    • /
    • 1993
  • Performance simulation for a Spark Ignition Wankel rotary Engine is presented in this paper. The volume of chamber at each eccentric shaft angle is evaluated by using geometric models of housing and rotor. A thermodynamic model which includes the first law of thermodynamics, combustion and convective heat transfer from chamber contents to surroundings is imployed. A thermochemical equilibrium model which considers 10 species(CO, $CO_2$, $O_2$, $H_2$, $H_2O$, OH, O, NO, $N_2$) in the burned gas region, is also employed. Four processes of gas exchange, compression, combustion and expansion are considered and the pressure, temperature and composition of chamber gas at each eccentric shaft angle in each process are computed in this performance simulation. This performance simulation must be useful for optimal design of Spark Ignition Wankel Rotray Engine with parametric study for various design parameters and operating conditions.

  • PDF