• Title/Summary/Keyword: Mode Analysis

Search Result 8,117, Processing Time 0.037 seconds

Investigation on Forced Vibration Behavior of Composite Main Wing Structure of A Small Scale WIG Craft Excited by Engine and Propeller (엔진 및 프로펠러에 의해 가진되는 소형 위그선 복합재 주날개의 진동 거동 해석)

  • Kong, Chang-Duck;Yoon, Jae-Huy;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1028-1035
    • /
    • 2007
  • this study, forced vibration analysis was performed on the composite main wing structure of a small scale WIG craft which is equipped two-stroke pusher type reciprocating engine. The structural vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the H-mode(horizontal mode), the V-mode(vertical mode) and the X-mode(twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the L-mode(longitudinal mode) with the oscillating propeller thrust which occurs.

Investigation on Forced Vibration Behavior of Composite Main Wing Structure Excited by Engine and Propeller (엔진 및 프로펠러 가진에 의한 위그선 복합재 날개 진동 해석)

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.217-221
    • /
    • 2007
  • In this study, forced vibrations analysis was performed for main wing of small scale WIG vehicle which is equipped two-stroke pusher type propeller engine, in terms of structural. for the frequency response analysis, excitations were assumed by H-mode(Horizontal mode), X-mode(Twisted mode) which is main vibration mode of engine, and for the transient response analysis, excitations were assumed by L-mode(Longitudinal mode) with propeller thrust which is occurred when it revolution.

  • PDF

Dynamic Analysis of Machine Tool Structure by Mode Synthesis Method (모드합성법을 이용한 공작기계구조물의 동적 거동 해석)

  • 이영우;성활경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.261-265
    • /
    • 2002
  • In the machining tool avoid vibration problem have an effect on high precision as well as statical and thermal characteristics. Therefore overcome this problem is essential to advance of machine tool and machining skill. Even though vibration arises owing to a variety of causes, in this paper vibration analysis of column as a major part of machine tool structures is presented. At this procedure vibration analysis applied to mode synthesis method using a attachment mode .

  • PDF

The performance analysis of multiple sliding mode control (다중 슬라이딩 모드 제어 방법의 성능 평가)

  • Chang, Wook;Joo, Jin-Man;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.658-660
    • /
    • 1995
  • This paper presents a performance analysis of the multiple sliding mode control for SISO system. The multiple sliding mode control technique uses sliding surfaces for each state. The performance analysis is done by comparison between the multiple sliding mode control and the sliding mode control. Overall performance of the multiple sliding mode control is improved over that of the sliding mode control. Results of numerical simulations are presented.

  • PDF

Mode Analysis of Cascaded Four-Conductor Lines Using Extended Mixed-Mode S-Parameters

  • Zhang, Nan;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • In this paper, based on the mode analysis of four-conductor lines, the extended mixed-mode chain-parameters and S-parameters of four-conductor lines are estimated using current division factors. The extended mixed-mode chain-parameters of cascaded four-conductor lines are then obtained with mode conversion. And, the extended mixed-mode S-parameters of cascaded four-conductor lines can be predicted from the transformation of the extended chain-parameters. Compared to the extended mixed-mode S-parameters of four-conductor lines, the cross-mode S-parameters are induced in the extended mixed-mode S-parameters of cascaded four-conductor lines, due to the imbalanced current division factors of cascaded two sections. The generated cross-mode S-parameters make the equivalent different- and common-mode conductors not independent from each other again. In addition, a new mode conversion, which applies the imbalanced current division factors, between the extended mixed-mode S-parameters and standard S-parameters is also proposed in this paper. Finally, the validity of the proposed extended mixed-mode S-parameters and mode conversion is confirmed by a comparison of the simulated and estimated results of shielded cable.

Desitgn of push-push osciplier using even-odd mode analysis (Even-odd mode 해석을 이용한 push-push osciplier의 설계)

  • 주한기;송명선;임성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.514-525
    • /
    • 1996
  • In this paper, Push-push Osciplier(Oscillator + Multiplier) has been analyzed by even-odd mode analysis method. A 10GHz DRO, an Osciplier using 10GHz DRO design method and an Osciplier using even-odd mode analysis method were designed, fabricated and tested to verify this method. The measured results verified the validity of the analysis method using even-odd mode analysis.

  • PDF

Consideration of residual mode response in time history analysis using residual vector (Residual Vector를 이용한 시간이력해석의 잔여모드 응답 고려 방법)

  • Chang Ho Byun;Han Geol Lee;Jung Yong Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.137-144
    • /
    • 2021
  • The mode superposition time history analysis method is commonly used in a seismic analysis. The maximum response in the time history analysis can be derived by combining the responses of individual modes. The residual mode response is the response of the modes which are not considered in the time history analysis. In this paper, the residual vector method to consider the residual mode response in the time history analysis is introduced and evaluated. Seismic analyses for a sample structure model and a reactor vessel model are performed to evaluate the residual vector method. The analysis results show that residual mode response is well calculated when the residual vector method is used. It is confirmed that the residual vector method is useful and acceptable to consider the residual mode response in a seismic analysis of the nuclear power plant equipment.

A Numerical Analysis Approach for Design of Cable Dome Structures (케이블 돔 구조물 설계를 위한 수치해석 방법)

  • Kim, Jae-Yeol;Jang, Dong-Woo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.89-94
    • /
    • 2008
  • This paper deals with the method of self-equilibrium stress mode analysis of cable dome structures. From the point of view of analysis, cable dome structure is a kind of unstable truss structure which is stabilized by means of introduction of prestressing. The prestress must be introduced according to a specific proportion among different structural member and it is determined by an analysis called self-equilibrium stress mode analysis. The mathematical equation involved in the self-equilibrium stress mode analysis is a system of linear equations which can be solved numerically by adopting the concept of Moore-Penrose generalized inverse. The calculation of the generalized inverse is carried out by rank factorization method. This method involves a parameter called epsilon which plays a critical role in self-equilibrium stress mode analysis. It is thus of interest to investigate the range of epsilon which produces consistent solution during the analysis of self-equilibrium stress mode.

  • PDF

Analysis and simulation of multi-mode piezoelectric energy harvesters

  • Zhang, Ying;Zhu, Binghu
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.549-563
    • /
    • 2012
  • Theoretical analysis is performed on a multi-mode energy harvester design with focus on the first two vibration modes. Based on the analysis, a modification is proposed for designing a novel adaptive multi-mode energy harvester. The device comprises a simply supported beam with distributed mass and piezoelectric elements, and an adaptive damper that provides a 180 degree phase shift for the motions of two supports only at the second vibration mode. Theoretical analysis and numerical simulations show that the new design can efficiently scavenge energy at the first two vibration modes. The energy harvesting capability of the multi-mode energy harvester is also compared with that of a cantilever-based energy harvester for single-mode vibration. The results show that the energy harvesting capacity is affected by the damping ratios of different designs. For fixed damping ratio and design dimensions, the multi-mode design has higher energy harvesting capacity than the cantilever-based design.

Mode Analysis of Coupled System (커플시스템의 모우드 분석 연구)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.28-34
    • /
    • 2010
  • The suggested coupled system was analyzed using FRF and mode analysis. The eigen-mode of FRF analysis is consistent with that of conventional FFT in spectrum. Also, three numerical responses of second order system, which are coupled, was obtained using the Runge-Kutta Gill method. The displacement, velocity and acceleration response were calculated for the numerical analysis of coupled system and the displacement response was used for the calculation of FRF of this system. Using the mixed response of 1st and 2nd mode in example, the FRF was analysed for the analysis of mixed mode coupled system. Also, its mode shape was acquired by solving the eigen problem of coupled system.