• Title/Summary/Keyword: Modal Analysis, Response Spectrum Analysis

Search Result 83, Processing Time 0.024 seconds

DYNAMIC CHARACTERISTICS OF CYLINDRICAL SHELLS CONSIDERING FLUID-STRUCTURE INTERACTION

  • Jhung, Myung-Jo;Kim, Wal-Tae;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1333-1346
    • /
    • 2009
  • To assure the reliability of cylinders or shells with fluid-filled annulus, it is necessary to investigate the modal characteristics considering fluid-structure interaction effect. In this study, theoretical background and several finite element models are developed for cylindrical shells with fluid-filled annulus considering fluid-structure interaction. The effect of the inclusion of the fluid-filled annulus on the natural frequencies is investigated, which frequencies are used for typical dynamic analyses such as responses spectrum, power spectral density and unit load excitation. Their response characteristics are addressed with respect to the various representations of the fluid-structure interaction effect.

Modal Combination Method for Prediction of Story Earthquake Load Profiles (층지진하중분포 예측을 위한 모드조합법)

  • Eom, Tae-Sung;Lee, Hye-Lin;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.65-75
    • /
    • 2006
  • Nonlinear pushover analysis is used to evaluate the earthquake response of building structures. To accurately predict the inelastic response of a structure, the prescribed story load profile should be able to describe the earthquake force profile which actually occurs during the time-history response of the structure. In the present study, a new modal combination method was developed to predict the earthquake load profiles of building structures. In the proposed method, multiple story load profiles are predicted by combining the modal spectrum responses multiplied by the modal combination factors. Parametric studies were performed far moment-resisting frames and walls. Based on the results. the modal combination factors were determined according to the hierarchy of each mode affecting the dynamic responses of structures. The proposed modal combination method was applied to prototype buildings with and without vertical irregularity. The results showed that the proposed method predicts the actual story load profiles which occur during the time-history responses of the structures.

Time History Analysis of Surge Line Considering PVRC Damping (PVRC 감쇠를 고려한 밀림관의 시간이력해석)

  • Kim Tae-Hyung;Jheon Jang-Hwan;Kim Jong-Min;Yoon Ki-Seuk;Kim In-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1025-1032
    • /
    • 2006
  • The PVRC(Pressure Vessel Research Council) damping is for the response spectrum analysis of the piping system. In this study, the possibility to apply it to the time history analysis is evaluated to reduce the higher conservatism for the structural integrity. The evaluation was performed for the surge line connecting the pressurizer to the hot-leg, and the whole mode includes the RCS and the building structures with the surge line. The analyses were performed using ANSYS code. The first modal analysis shows the modes of the surge line are isolated from those of the other structures. The composite modal damping was calculated with PVRC damping for the surge line and RG 1.60 damping for the other structures by using ANSYS routines. Of the calculated composite modal damping values, the composite modal damping values related to the modes of the surge line were replaced with the PVRC damping values with respect to its frequencies. With this replacement, the composite modal damping values of the other structures were not changed. Based on this decouple characteristics, the time history analyses for the seismic events with PVRC damping for the surge line were performed. And the results show the resultant loads can be reduced by up to 50%.

  • PDF

Seismic Qualification of the Main Control Board for Nuclear Power Plant (원자력발전소용 주 제어반의 내진 검증)

  • 변훈석;이준근
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.856-863
    • /
    • 2002
  • Seismic qualification of the main control board(MCB) for the nuclear power plant Ulchin 5 and 6 has been performed with the guideline of ASME Section III and IEEE 344 code. As the size and weight of the MCB are too large and heavy to excite using the excitation table, finite element analysis is used in order to investigate the dynamic behaviors and structural integrity of the MCB. As the fundamental frequencies of the equipment are found to be less than 33 Hz, which is the upper frequency limit for the dynamic analysis, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the electrical stability of the major components of the MCB. modal analysis theory has been adopted to derive the required response spectra at the component locations. As the all combined stresses obtained from the above procedures are less than the allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors can confirm the safety of the nuclear equipment MCB under the given seismic loading conditions.

A Study on the Error Characteristics in Response Spectrum Analysis (응답스펙트럼해석의 오차특성에 관한 연구)

  • 최형철;배익주;강병도;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.35-42
    • /
    • 1998
  • Response spectrum analysis method(RSA) rather than time history analysis method(THA) continues to e used by the profession for evaluating maximum dynamic responses of structures subjected to earthquake excitations. Nevertheless, this simple and practical method can cause significant errors in some cases with unproper modal combination method and so on. To obtain more exact responses based n RSA many studies have been carried out considering displacement of top story, base shear and overturning moment. The purpose of this study is to verify error characteristics in RSA with respect to various responses including displacement shear force and overturning moment of each story. It's shown that RSA appears to yield underestimated responses when compared to THA calculations. Also, errors involved in RSA computations grow with an increase in total number of stories.

  • PDF

Comparison of Approximate Nonlinear Methods for Incremental Dynamic Analysis of Seismic Performance (내진성능의 증분동적해석을 위한 비선형 약산법의 비교 검토)

  • Bae, Kyeong-Geun;Yu, Myeong-Hwa;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • Seismic performance evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. Incremental Dynamic Analysis(IDA) is a analysis method that has recently emerged to estimate structural performance under earthquakes. This method can obtained the entire range of structural performance from the linear elastic stage to yielding and finally collapse by subjecting the structure to increasing levels of ground acceleration. Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. The nonlinear response history analysis(NRHA) among various nonlinear analysis methods is the most accurate to compute seismic performance of structures, but it is time-consuming and necessitate more efforts. The nonlinear approximate methods, which is more practical and reliable tools for predicting seismic behavior of structures, are extensively studied. The uncoupled modal response history analysis(UMRHA) is a method which can find the nonlinear reponse of the structures for ESDF from the pushover curve using NRHA or response spectrum. The direct spectrum analysis(DSA) is approximate nonlinear method to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. In this study, the practicality and the reliability of seismic performance of approximate nonlinear methods for incremental dynamic analysis of mixed building structures are to be compared.

An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis (시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

Investigation of Hydrodynamic Mass Characteristic for Flow Mixing Header Assembly in SMART (SMART 유동혼합헤더집합체의 동수력 질량 특성 고찰)

  • Lee, Gyu Mahn;Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2020
  • In SMART, the flow mixing header assembly (FMHA) is used to mix the coolant flowing into the reactor core to maintain a uniform temperature. The FMHA is designed to have enough stiffness so the resonance with reactor internal structures does not occurs during the pipe break and the seismic accidents. Since the gap between the FMHA and the core support barrel assembly is very narrow compared with the diameter of FMHA, the hydrodynamic mass effect acting on the FMHA is not negligible. Therefore the hydrodynamic mass characteristics on the FMHA are investigated to consider the fluid and structure interaction effects. The result of modal analysis for the dry and underwater conditions, the natural frequency of primary vibration mode for the horizontal direction is reduced from 136.67 Hz to 43.76 Hz. Also the result of frequency response spectrum seismic analysis for the dry and underwater conditions, the maximum equivalent stress are increased from 13.89 MPa to 40.23 MPa. Therefore, reactor internal structures located in underwater condition shall consider carefully the hydrodynamic mass effects even though they have sufficient stiffness required for performing its functions under the dry condition.

Application of Response Spectrum Method to a Bridge subjected to Multiple Support Excitation (다지점(多支點) 지진하중(地震荷重) 받는 교량(橋梁)에 대한 응답(應答) 스펙트럼법(法)의 적용(適用))

  • Kang, Kee Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 1990
  • The dynamic behaviour of a four-span continuous girder railway bridge subjected to multiple support excitations is investigated using the response spectrum method. Small-amplitude oscillations and linear-elastic material behaviour are assumed. Soil-structure interaction effects are disregarded and only the out-of-plane response of the bridge is considered. The results of the response spectrum analysis are compared with those from a time history analysis. Different combination rules for the superposition of modal maxima as well as supports are employed, such as square-root-of-sum-squares, double sum and p-norm methods.

  • PDF

Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect

  • Sonmezer, Yetis Bulent;Celiker, Murat
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.131-146
    • /
    • 2020
  • Evaluation of earthquake impacts in settlements with a high risk of earthquake occurrence is important for the determination of site-specific dynamic soil parameters and earthquake-resistant structural planning. In this study, dynamic soil properties of Karliova (Bingol) city center, located near to the intersection point of the North Anatolian Fault Zone and the East Anatolian Fault Zone and therefore having a high earthquake risk, were investigated by one-dimensional equivalent linear site response analysis. From ground response analyses, peak ground acceleration, predominant site period, 0.2-sec and 1-sec spectral accelerations and soil amplification maps of the study area were obtained for both near-field and far-field earthquake effects. The average acceleration spectrum obtained from analysis, for a near-field earthquake scenario, was found to exceed the design spectra of the Turkish Earthquake Code and Eurocode 8. Yet, the average acceleration spectrum was found to remain below the respective design spectra of the two codes for the far-field earthquake scenario. According to both near- and far-field earthquake scenarios in the study area, the low-rise buildings with low modal vibration durations are expected to be exposed to high spectral acceleration values and high-rise buildings with high modal vibration durations will be exposed to lower spectral accelerations. While high amplification ratios are observed in the north of the study area for the near-distance earthquake scenario, high amplification ratios are observed in the south of the study area for the long-distance earthquake scenario.