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To assure the reliability of cylinders or shells with fluid-filled annulus, it is necessary to investigate the modal
characteristics considering fluid-structure interaction effect. In this study, theoretical background and several finite element
models are developed for cylindrical shells with fluid-filled annulus considering fluid-structure interaction. The effect of the
inclusion of the fluid-filled annulus on the natural frequencies is investigated, which frequencies are used for typical dynamic
analyses such as responses spectrum, power spectral density and unit load excitation. Their response characteristics are
addressed with respect to the various representations of the fluid-structure interaction effect.

KEYWORDS : Cylindrical Shell, Fluid-structure Interaction, Annulus, Modal Characteristic, Response Spectrum, Power Spectral Density, Harmonic

Analysis, Added Mass

1. INTRODUCTION

Coaxial shelis or cylinders containing fluid have been
widely used as structural components in various applications.
Examples are reactor internal structures such as core
support barrel and upper guide structure barrel coupled
with each other by fluid-filled annulus [1] and spent fuel
storage racks. To assure the reliability of those components
during normal operations of a nuclear power plant, it is
necessary to predict vibration amplitude, necessitating the
investigation of the modal characteristics considering
fluid-structure interaction effect.

There are many finite element models used for assessing
the structural integrity of cylinders or shells with fluid-
filled annulus. In the past, the fluid region was not modeled
explicitly and its mass was added to the structural mass
in the form of an added mass for simplicity. In this case
the fluid-structure interaction effect, the so called annulus
effect, is not considered in the analysis, generating unrealistic
or unconservative results in some cases. Therefore, it is
necessary to make a 3-dimensional model including the
fluid region and to couple the two nodes that are assigned
to the fluid and the structure. Fortunately, commercial
programs such as ANSYS [2] can easily model couplings
between the fluid and the structure and can consider the
annulus effect for various types of analyses very efficiently.

Therefore, in this study, theoretical background and
several finite element models are developed for coaxial
cylindrical shells with fluid-filled annulus considering
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fluid-structure interaction. The effect of the inclusion of
the fluid-filled annulus on the natural frequencies is
investigated by comparing frequencies between various
finite element models. Using the modal characteristics,
typical dynamic analyses such as responses spectrum,
power spectral density (PSD) and unit load excitation
analysis are performed and their response characteristics
are addressed with respect to the various representations
of the fluid-structure interaction.

2. THEORETICAL DEVELOPMENT

The equations of motion can be represented for the
displacements x on the structure as:

{nluu ”141[7 :“:jéa :l + {cua C(ll} :‘[xu jt

My, My, § X, Ch Cop | %
ko kX, 0

+ = )]
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where the displacements x; are forced to vary in a defined
manner with prescribed functions of time and p, represents
the column matrix of unknown forces causing the
displacements x..

If the hydrodynamic couplings are considered in the
analysis, the mass matrix is
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0
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where M, and M, are the structural and hydrodynamic mass
matrices, respectively. Considering two mass points with
hydrodynamic couplings, Equation (1) becomes

[maas M, uon :llixa:' _ [FG:I (3)
my, My + My | X F,

where F,, and F} are the spring and damping forces at nodes
a and b defined as:

{:Fa} _I: —(caaxa +Cﬂbxb +kaaxa +kabxb) :I (4)

F, —(CpX, +epXy kX, +kyx, )+ p,

In a solution which is based on a direct integration of
the equations of motion, the spring and damping forces
are evaluated at each instant of time and then the accelerations
are solved. Integration of the accelerations gives the
velocities and displacements needed to reevaluate the
accelerations for the next time step [3].

The hydrodynamic mass matrix can be calculated
from the fluid velocity potential for the two long concentric
cylinders separated by a gap filled with ideal and compressible
fluid, as shown in Figure 1. The governing continuity
equation is written for any instant [4] as:

2’9 ,10p, 10 _

o’ P2 06* ©

o ror

where ¢ is the velocity potential, and » and @ are the radial
and angular coordinates. Applying the boundary conditions
for the radial component of fluid velocity at » = a and » =
b yields the following solution for ¢ :

¢=‘l‘)a_{(£§“z—§)”x’ Slooss  (6)
a r

Therefore, fluid forces on the cylinders are obtained
by integrating fluid pressure in the annulus along the
circumference, resulting in matrix form as:

M, { e @

—mm+ﬂ
-m(f, +1)

m,f.
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where my(= pra®) is the mass of fluid displaced by the inner
cylinder, m, (= pab*) is the mass of fluid contained by
the outer cylinder and f; is the magnification factor for
hydrodynamic mass depending on the size of the annulus
defined as:

. :L*“i ®)

b -4a?

If the gap is infinite, the magnification factor f; becomes
zero and only the off-diagonal terms exist with the added
mass of the inner cylinder, as shown in Figure 2. If the

Fig. 1. Coaxial Cylinders with Fluid Coupling

Magnification Factor (5+d’ / - a°)

0 20 40 60 80 100

Gap (b - a)
Fig. 2. Magnification Factor of Hydrodynamic Mass for Two
Coaxial Cylinders
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gap is so small, the factor becomes infinite and the fluid
force tends to cushion one cylinder from the other 5].

2.2 Damping Values

A viscous damping matrix C formed by a linear
combination of the mass and stiffness matrices is used [6]:

C=aM+pBK 9)

where M is the mass matrix and K the stiffness matrix. In
this form, o and 3 are constants to be determined from the
two given damping ratios that correspond to two unequal
frequencies of vibration. Much of the experimental data on
damping properties consists of ratios, &, of natural damping
to critical damping for a particular mode of vibration, ;. If
a natural frequency w; and a modal damping ratio &, are
selected, the mass and stiffness matrix multipliers for
damping, o and g, should satisfy the following relation [7]:

é:_ _—_i+.’5_ai

20, 2 (1)

For a given damping ratio (&, and &) and a frequency
range (w; and w;), two equations can be solved simultaneously
for the values of a and B, as follows:

o= 2wia)j(wi§j —a)jéi)

> > (11)
w, -0,
Awé -0,
PRCCERTYD, .
@, —w;

1 g

Then for an arbitrary frequency w,, the damping ratio
&, can be computed by eliminating ¢« and 8 and is given as:

wia)j(wifj - wjgi)
‘fr = 2 ® 2 a)/'
' M RECACCYS _a)jéj)
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where the first and second terms in Equation (13) represent
mass damping and stiffness damping, respectively. Mass
damping introduces the damping forces that are proportional
to the velocities of each mass point in the system and may
be used to represent the energy loss due to impact and
friction. Stiffness damping introduces the damping forces
that are proportional to the time rate of deformation. While
the mass damping introduces the damping forces due to
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the rigid body motion of the system, the stiffness damping
does not.

3. FINITE ELEMENT MODELS

Consider fluid-filled coaxial cylindrical shells with
clamped-free boundary conditions at bottom and top ends.
The cylindrical shells have mean radii R, and R», height
L, and wall thickness A. The inner and outer shells are
coupled with a fluid-filled annular gap. The inner cylindrical
shell has a mean radius of 100 mm, a length of 300 mm,
and a wall thickness of 2 mm. The outer cylindrical shell
has a mean radius of 150 mm with the same length and
wall thickness. The physical properties of the shell material
are as follows: Young's modulus = 69.0 GPa, Poisson’s
ratio = 0.3, and mass density = 2700 kg/m’. Water is used
as the contained fluid with a density of 1000 kg/m’. The

gy
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(b) 3-D model

(b) 2-D model

Fig. 3. Finite Element Models of Coaxial Cylindrical Shells
with Fluid
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sound speed in water, 1483 m/s, is equivalent to the bulk
modulus of elasticity, 2.2 GPa.

A three-dimensional model is constructed for the finite
element analysis. The fluid region is divided into a number
of identical 3-dimensional contained fluid elements (FLUIDS0)
with eight nodes, having three degrees of freedom at each
node. The fluid element FLUIDSO is particularly well
suited for calculating hydrostatic pressures and fluid/solid
interactions. The circular cylindrical shell is modeled as
elastic shell elements (SHELL63) with four nodes. The
model has 3840 (radially 4 X axially 20 X circumferentially
48) fluid elements and 1920 shell elements, as shown in
Figure 3(a).

Another finite element model is constructed using
axisymmetric-harmonic structural shell elements (SHELL61)
and axisymmetric-harmonic contained fluid elements
(FLUIDS]1) for cylinder and fluid, respectively. The model
has 80 fluid elements and 40 shell elements, as shown in
Figure 3(b).

The nodes connected entirely by the fluid elements
are free to move arbitrarily in three-dimensional space,
with the exception of those that are restricted to motion in
the bottom surface of the fluid cavity. The radial velocities
of the fluid nodes along the wetted shell surfaces coincide
with the corresponding velocities of the shells. For the
shell, clamped-free boundary condition is considered at
bottom and top ends.

If the fluid is not included in the model, the mass matrix
in Equation (2) is

m, 0
M:{ o } (14)

If the fluid is included as an added mass only in the
model, the mass matrix in Equation (2) is

M — maas + nle; 0 (15)
0 My, +m, f,

If the fluid is included fully as hydrodynamic coupling in
the model, the mass matrix in Equation (2) is

M - |:muas + mlj;' - ml(/; + 1) (16)

-m(f, +1) m, +m,f,

These three different representations of the mass
matrix may be the major reasons for the different modal
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characteristics, generating corresponding response
differences due to response spectrum, harmonic, power
spectral density and transient analyses.

4. ANALYSIS

Finite element analyses using the commercial computer
code ANSYS 11.0 [2] are performed to find the natural
frequencies of the coaxial circular cylindrical shells with
a bounded compressible fluid.

Several cases of the finite element analyses are performed
depending on the model and fluid existence. The Block
Lanczos method is used for the eigenvalue and eigenvector
extractions to calculate sufficient number of frequencies
including fluid modes [8]. It uses the Lanczos algorithm
where the Lanczos recursion is performed with a block of
vectors. This method is as accurate as the subspace method,
but faster. The Block Lanczos method is especially powerful
when searching for eigenfrequencies in a given part of the
eigenvalue spectrum of a given system. The convergence
rate of the eigenfrequencies will be about the same when
extracting modes in the midrange and higher end of the
spectrum as when extracting the lowest modes.

Response spectrum analysis is performed for the arbitrary
spectra. Single point response spectrum is applied to the
bottom nodes of the shells, which are fixed in all degrees
of freedom. The responses such as maximum deflections
and equivalent stresses are investigated for various models.

Power spectral density analysis is performed for the
arbitrary PSD. Single point PSD is applied to the bottom
of the shells. The velocity PSDs of top nodes for inner
and outer shells are generated for various models.

Damping Ratio (%)

0 2 PO W S T U B

100 1000 10600
Frequency (Hz)

Fig. 4. Damping Ratio Used in the Transient Analysis
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A unit pulse is applied to the arbitrary node of the outer
shell for the 3-dimensional model and the 2-dimensional
model. The response of displacement is generated for the
node where the pulse is applied. The viscous damping is
assumed and is calculated. The frequency range is
designated from 150 Hz to 10000 Hz to encompass the
whole frequency range of the models. For the damping
ratio of 2%, «a and B, the mass and stiffness matrix
multipliers for damping, are calculated as 5.9113 and
3.9409E-6 by Equations (11) and (12), respectively. For
an arbitrary frequency, the damping ratio can be computed
as shown in Figure 4.

A unit load is applied to the arbitrary node of the outer
shell. The responses of displacement and velocity are
generated for the node where the unit load is applied.

5. RESULTS AND DISCUSSION

Mode shapes of the fluid-coupled coaxial shells are
obtained by the finite element method; a typical mode is
plotted in Figure 5, which shows the deformed mode shape
of the fluid and shell elements for the circumferential wave
number n = 3. The dotted lines in the figures represent
the undeformed shapes of the cylindrical shells.

All of the mode shapes can be classified into two mode
categories according to the relative moving directions
between the inner and outer shells during the vibration:
in-phase mode (Figure 6) and out-of-phase mode (Figure
7). Reviewing the vibrational mode shapes revealed that
as the circumferential mode number increases, the out-of-
phase and in-phase modes in the serial vibrational modes
appear alternatively. Mode shapes of 2-dimensional
axisymmetric model are shown in Figure 8 for circumferential
mode n=1.

z

%
4.l k
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Fig. 5. Typical Mode Shape of Fluid-coupled Coaxial Shells
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The frequencies between coaxial shells with and without
fluid-filled annulus are compared as shown in Figures 9
and 10. In the case of shells without fluid-filled annulus,
the inner and outer shells give similar frequencies for
lower axial and circumferential mode numbers, but as the
circumferential mode number increases the frequencies of
the inner shell are found to be larger than those of outer
shell frequencies. Contrary to this, for the case of shells
with fluid-filled annulus, the frequencies of the in-phase
mode are always higher than those of the out-of phase
mode as the frequency deviates from its lowest point.

The effect of fluid-filled annulus on the frequencies
can be assessed using the normalized frequency, defined

z

% #
HOTAL MA?&},‘E;‘&@‘L’% DUATIEL FERLLS WITE FLUID %?&‘iﬁ* FREEY

Fig. 6. Typical Mode Shape of In-phase Mode
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Fig. 7. Typical Mode Shape of Out-of-phase Mode
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Fig. 11. Normalized Frequencies of Shells with Fluid w.r.t. without Fluid (Inner Shell)
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Fig. 13. Frequencies of Shells with Added Mass for Fluid

as the frequency with fluid-filled annulus divided by the
frequency without it. Figures 11 and 12 show the normalized
natural frequencies of fluid-filled shells for in-phase and
out-of-phase modes with respect to the inner shell and
outer shell in air conditions, respectively. This is based on
the fact that generally in-phase modes have more deflections
of inner shell and out-of-phase modes have more deflections
of outer shell. The frequencies of the outer shell decrease
more than those of inner shell; the reduction rate ranges
from 0.4 to 0.6 for the inner shell and from 0.2 to 0.5 for
the outer shell. Also, the lower circumferential modes are
more affected by the inclusion of the fluid-filled annulus
for the outer shell, but the inner shell has almost the same
reduction rate all through the circumferential modes.

If the fluid is considered as an added mass only, the
frequencies are as shown in Figure 13. In comparing
frequencies between full consideration and added mass

1340

model, several modes did not appear in the added mass
model, which indicates that several modes are missing
due to the nonexistence of the coupling effect when the
fluid is considered as an added mass only. This may lead
to the different response characteristics in the ensuing
dynamic analysis, such as response spectrum, PSD and
harmonic analyses. The normalized frequencies in this
case have the same trend as that in the full modeling case,
with several exceptions as shown in Figure 14.

The frequencies and their normalized values of the 2-
dimensional axisymmetric model are also shown in Figures
13 and 14. The comparisons between 3-dimensional and
2-dimensional models are shown in Figure 15. There is
good agreement between them for the first several axial
modes, indicating that the axisymmetric-harmonic element
gives almost the same modal characteristics as the 3-
dimensional element.
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Fig. 15. Comparison of Frequencies between 3-D and 2-D Models

The maximum deflections and equivalent stresses
derived from the response spectrum analysis are shown
in Table 1. As indicated in the table, the responses decrease
significantly when the fluid is not included in the model.
If the fluid is considered as added mass only, or if the
fluid coupling effect is not considered in the model, the
responses are generally lowered. Therefore, it is concluded
that failing to consider fluid coupling may give unconservative
results, which should not be missed in the structural integrity
assessment for the nuclear components.

The velocity PSDs at nodes for inner and outer shells
are shown in Figure 16, which shows that there are wide
differences of response PSDs between models. The
amplitude and frequency depend on the modal characteristics,
which also depend on the existence of fluid and the modeling
technique. The maximum deflections and equivalent
stresses from the PSD analysis are shown in Table 2. As

NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.10 DECEMBER 2009

Table 1. Response Summaries from Response Spectrum

Analysis
Maximum deflection (m) | Maximum equivalent stress (Pa)
Model

Inner shell | Outer shell | Innershell | Outer shell
With fluid 256E-4 .170E-4 495E7 453E7
Without fluid | .184E-5 114E-5 304E6 .185E6
Withadded 1) g 4 | 17184 | 37387 | 28487
mass for fluid

indicated in the table, the deflection and stress increase
significantly when the fluid is included as an added mass
in the model. If the fluid is not considered in the model,
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Fig. 16. Response PSDs from PSD Analysis

Table 2. Response Summaries from PSD Analysis

Maximum deflection (m) | Maximum equivalent stress (Pa)

Model Inner shell | Outer shell | Innershell | Quter shell
With fluid 210E-4 236E-4 907E7 .127ES8
Without fluid | .203E-4 203E-4 A499E7 495E7
stl ?:fflii g| 103E-3 | 1033 | 25388 | 251ER
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the responses are generally lowered.

The displacements at the node where the pulse is applied
and at the node of the inner shell are shown in Figure 17,
which shows that there is a small difference of responses
between models. The maximum deflections from the
transient analysis are shown in Table 3. As indicated in
the table, the deflection is almost the same irrespective of
the fluid model. If the fluid is not considered in the model,
the response after the pulse is applied decreases very
rapidly. But if the fluid is considered, the response due to

NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 N0.10 DECEMBER 2009



JHUNG et al,, Dynamic Characteristics of Cylindrical Shells Considering Fluid-structure Interaction

1 AN T AN
{xperegy )
€ €.
5 &
+ 4.
3 3
g ]
& PR
E i i
R
" AASA
: . W /WWW PV vAvﬂ Tosux ’ ‘MJW WINAANVIA A i
-4 o
o 9
=k %
3 -3
- -3
-4 $ ! B3
b W ~0R BH &% W3 L4 gl N Al B3 @&
0% N 1 e .81 K EY T
Tise {snc} Time {sac}
TRANSUENT JMALYSLS OF COMKIAL SHELLS WITH FLUID (3-D) TEAMSIENT AMALYSIS OF COAXJAL SHELLS WITH FLUID {3-D)
¥ AN 7 AN
FRy—. cetemengy
L2 £
& 5
L3 .
3 >
i B
oy ] e z
g ' !
'a‘_ A i R ALl ° ELIE
a 3
-t o =3
-z -3
- -3
-4 4
+ Bl .08 A2 ‘6 a2 & B2 e 12 13 .2
.83 . Y B A1 E g it
Time {aec} Time {pech
TRAMSIENT AMALYSIS OF COAXIAL SHELLS WITHOUT FLUXD (3-D) TRANSIENT RMALYSIS OF COAKIAL SMELLS WITHOUT FLBID {3-1)
1 AN 7 AN
. ixseveds
6 ®
* s
+ +
ps 2
g !
ot & ot 2
E i g E
i RLL T 3
¢ - AWMy i
z -]
“k = <k
~3
-¥ -3
- -3
o R 208 212 W18 P e Bod «08 R B W
R i3] -14 ) B B =] B 1%
Time {sech Time {sec)
TEANSIENT AMALYSS OF COAXIAL SHELLS WITH ADDED MASS FOR FLUID (3-D) TRANSTENT MMALYSIS OF COXRTAL SEZLLS WITR ALOED MASS POR FLYID {3-D)

Fig. 17. Displacement Time Histories from Transient Analysis for 3-D Model

the pulse appears for a long time. As shown in Figure 17,
there is no displacement at the node of the inner shell if
the fluid is not included in the model because there is no
load path from the outer shell where the pulse is applied
to the inner shell via couplings between shell and fluid.
The same kind of transient analyses are performed for
the 2-dimensional axisymmetric model. The displacements
at corresponding nodes are shown in Figure 18, By comparing
displacements between 3-dimensional and 2-dimensional
models, it is not clear that the 2-dimensional axisymmetric

NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.10 DECEMBER 2009

model can simulate the transient analysis.

The displacements and velocities from the harmonic
analysis at the node where the unit load is applied are
shown in Figure 19, which shows that there is a difference
of response between models due to the different modai
characteristics. If the fluid is not considered in the model,
the responses are generally lower than those for the model
with fluid. But if the fluid is considered, the responses are
almost the same irrespective of the fluid model representations
such as added mass or fluid mass.
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Fig. 18. Displacement Time Histories from Transient Analysis for 2-D Model

Table 3. Response Summaries from Transient Analysis

Maximum respbnses
Model
Displacement (m) Time (sec)

With fluid 0.443844E-05 0.40000E-02
3D Without fluid 0.469215E-05 0.20000E-02

Withadded ) 4 65746F.05 0.30000E-02

mass for fluid

With fluid 0.272461E-07 0.80000E-02
"D Without fluid 0.265461E-07 0.10000E-01

With added 0.281476E-07 0.60000E-02

mass for fluid
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6. CONCLUSIONS

Several representations of fluid were made for modal
analysis of coaxial shells with fluid-filled annulus. Their
modal characteristics are compared among several different
models and they are used for generating dynamic
responses due to response spectrum and power spectral
density. Also, harmonic analysis and transient analysis
with unit input load are performed for various models and
the responses are compared, generating the following
conclusions:

The effect of fluid on the frequencies is more significant

for out-of-phase mode and inner shell than in-phase

mode and outer shell.

Representing fluid by added mass gives higher frequencies

NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.10 DECEMBER 2009
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Fig. 19. Displacement and Velocity Time Histories from Harmonic Analysis

for in-phase modes and lower frequencies for out-of-

phase modes.

- The axisymmetric-harmonic element is found to be a
very efficient way to investigate the modal characteristics,
suggesting the use of this element instead of a 3-

dimensional element for modal analysis.

- The axisymmetric model is not recommended for

dynamic analysis except modal analysis.

Failing to consider fluid coupling effect besides added
mass for the response spectrum, PSD, transient and

{UCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 N0O.10 DECEMBER 2009

harmonic analyses may give unconservative results,
which should not be neglected in the structural integrity
assessment for the nuclear components.
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