• Title/Summary/Keyword: MoM

Search Result 2,390, Processing Time 0.033 seconds

Creep Rupture Due to Molybdenum Rich $M_6C$ Carbide in 1.0Cr-1.0Mo-0.25V Steel Weldment (1.0Cr-1.0Mo-0.25V강 용접부의 $M_6C$ 탄화물에 의한 크립 파단)

  • O, Yeong-Geun;Kim, Byeong-Cheol;Gang, Gye-Myeong;Min, Tae-Guk
    • Korean Journal of Materials Research
    • /
    • v.6 no.12
    • /
    • pp.1257-1262
    • /
    • 1996
  • 1.0Cr-1.0Mo-0.25V강 용접부의 크립 파단 시험시 파단 발생 원인에 관한 연구가 시행되었다. 파괴는 Intercritical Heat Affected Zone에서 발생하였으며 파단면에서 구상의조대한 M6C탄화물이 발견되었다. 모재는 molybdenum 주성분의 M2C, vanadium 주성분의 M4C3 및 chromium 주성분의 M23C6와 M7C3 탄화물이 존재하였다. 모의 실험 결과 준안정 상태인 M2C 탄화물은 85$0^{\circ}C$, 10oh에서 안정한 M6C탄화물로 변태하였다. M6C 탄화물은 주변의 molybdenum 농도를 떨어뜨려 강도의 저하를 가져오며 크립 기공의 발생 원인을 제공하였다.

  • PDF

A Study on the Thermal Properties of Mo-Cu Composites as a Heat Sink Material (Heat Sink용 Mo-Cu 합금 재료의 열적 특성)

  • Hwang, Chang-Gyu;Jang, Gun-Eik;Park, Chi-Wan;Kim, Tae-Hyoung;Woo, Yong-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.311-314
    • /
    • 2003
  • In Mo-Xwt%Cu compound, Physical and thermal properties were systematically evaluated in terms of Cu contents and sintering temperature. Typically Cu contents were varied from 15 to 25wt% and also the Sintering temperatures were changed from $1115^{\circ}C$ to $1350^{\circ}C$. In physical properties, Mo-15~25wt%Cu has the maximum density of 95% while Mo-20wt%Cu has the maximum thermal conductivity of 165.179[${\mu}/m^{\circ}C$] at sintering temperature of $1300^{\circ}C$. Especially, Mo-25wt%Cu has the maximum hardness of 173.4 at sintering temperature of $1150^{\circ}C$ and the maximum thermal expansion of 9.0[W/mK] as the specimen heated in the range of temperature from $50^{\circ}C$ to $400^{\circ}C$. Based on electrical conductivity measurements, the relative density increased within creasing Cu contents and the values were in the range of 100~150[W/mK].

Microstructure and Mechanical Properties of Cr-Mo Steels for Nuclear Industry Applications

  • Kim, Sung-Ho;Ryu, Woo-Seong;Kuk, Il-Hiun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.561-571
    • /
    • 1999
  • Microstructure and mechanical properties of five Cr-Mo steels for nuclear industry applications have been investigated. Transmission electron microscopy, energy dispersive spectrometer, differential scanning calorimeter, hardness, tensile, and impact test were used to evaluate the Cr and W effect on the microstructure and mechanical properties. Microstructures of Cr-Mo steels after tempering are classified into three types : bainitic 2.25Cr-lMo steel, martensitic Mod.9Cr-lMo, HT9M, and HT9W steels, and dual phase HT9 steel. The majority of the precipitates were found to be M$_{23}$C$_{6}$ carbides. As minor phases, fine needle-like V(C,N), spherical NbC, fine needle-like Cr-rich Cr$_2$N, and Cr-rich M$_{7}$C$_3$were also found. Addition of 2wt.% W in Cr-Mo steels retarded the formation of subgrain and dissolution of Cr$_2$N precipitates. Hardness and ultimate tensile strength increased with increasing Cr content. Though Cr content of HT9W steel was lower than that of HT9 steel, the hardness of HT9W was higher due to the higher W content. W added HT9W steel had the highest ultimate tensile strength above $600^{\circ}C$. But impact toughness of W added steel (HT9W) and high Cr steel (HT9) was low.w.w.

  • PDF

Analytical Evaluation of MoM Matrix Elements Based upon a New Closed-Form Greenos Functions (새로운 Closed-Form 그린함수에 근거를 둔 MoM 행렬 요소의 해석적 계산)

  • 김의중;이상준;이영순
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.499-508
    • /
    • 2004
  • An efficient method of moments(MoM), which can lead to the analytical evaluation of the matrix elements, is proposed to analyze microstrip structures. The present method is formulated in conjunction with use of a new closed-form spatial-domain Green's functions which are derived by use of the integral formula for semi-infinite integrals of Bessel functions. It is observed that the computational efficiency such as the amount of calculation and computation speed has been improved due to the present MoM scheme by a factor of about 4 in comparison with the previous method. To validate the proposed method, several numerical examples are presented.

An Architecture Supporting Adaptation and Evolution in Fourth Generation Mobile Communication Systems

  • Prehofer, Christian;Kellerer, Wolfgang;Hirschfeld, Robert;Berndt, Hendrik;Kawamura, Katsuya
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.336-343
    • /
    • 2002
  • A major challenge for next generation mobile communication is capturing the system architecture’s complexity with all its internal and external dependencies. Seamless integration of heterogeneous environments in all system parts is a key requirement. Moreover, future systems have to consider the different evolution cycles of individual system parts. Among those, services are expected to change the fastest. With respect to these considerations, we propose an overall architecture for next generation mobile communication systems. It covers all system parts from wireless transmission to applications including network and middleware platform. Our approach focuses on adaptability in terms of recon- figurability and programmability to support unanticipated system evolution. Therefore, we consider abstraction layers which consist of adaptable cooperating components grouped by open platforms rather than rigid system layers. In addition to that, we introduce cross-layer cooperation allowing an efficient use of the available resources. Specific scenarios illustrate the feasibility of our approach.

Paratic Impedance Extraction of FC-PGA Package Pin using the Static Fast Multipole Method (Static FMM을 이용한 FC-PGA 패키지 핀에서의 기생 임피던스 추출)

  • 천정남;이정태;어수지;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1076-1085
    • /
    • 2001
  • In this paper, the FMM(Fast Multipole Method) combined with GMRES(Generalized Minimal RESidual Method) matrix solver is used to extract the parasitic impedance for complicated 3-D structures in uniform dielectric materials which limit the use of MoM(Method of Moment) due to its large computation time and memory requirement. This algorithm is a fast multipole-accelerated method based on quasistatic analysis and is very efficient for computing impedance between conductors. This paper proved the accuracy and efficiency of the FMM by comparing with MoM in simple examples. Finally the parasitic impedance of FC-PGA(Flip Chip Pin Grid Array) Package pins has been extracted by this algorithm and we have considered the possibility of the EMI/EMC problem caused by the signal interference.

  • PDF

Scattering analysis of curved FSS using Floquet harmonics and asymptotic waveform evaluation technique

  • Jeong, Yi-Ru;Hong, Ic-Pyo;Chun, Heoung-Jae;Park, Yong Bae;Kim, Youn-Jae;Yook, Jong-Gwan
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.561-572
    • /
    • 2014
  • In this paper, we present the scattering characteristics of infinite and finite array using method of moment (MoM) with Floquet harmonics and asymptotic waveform evaluation (AWE) technique. First, infinite cylindrical dipole array is analyzed using the MoM with entire domain basis function and cylindrical Floquet harmonics. To provide the validity of results, we fabricated the cylindrical dipole array and measured the transmission characteristics. The results show good agreements. Second, we analyzed the scattering characteristics of finite array. A large simulation time is needed to obtain the scattering characteristics of finite array over wide frequency range because Floquet harmonics can't be applied. So, we used the MoM with AWE technique using Taylor series and Pade approximation to overcome the shortcomings of conventional MoM. We calculated the radar cross section (RCS) as scattering characteristics using the proposed method in this paper and the conventional MoM for finite planar slot array, finite spherical slot array, and finite cylindrical dipole array, respectively. The compared results agree well and show that the proposed method in this paper is good for electromagnetic analysis of finite FSS.

Numerical Evaluation of MoM Matrix for a General Microstrip Structures (일반적인 마이크로스트립 구조에 관한 MoM 행렬의 수치계산)

  • 이영순;김의중;오병희;조영기
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.3-6
    • /
    • 2001
  • In case that a closed-form Green's functions are used for the numerically efficient analysis of a general microstrip structures of thin or thick substrate, an efficient technique for the evaluation of MoM off-diagonal matrix elements as well as diagonal elements is proposed. In order to check the validity of the present method, performance is demonstrated for the example of a coaxially-fed microstrip antenna and the present results are compared with the previous results.

  • PDF