• Title/Summary/Keyword: MoC

Search Result 3,088, Processing Time 0.028 seconds

Characteristics of Carbon-Doped Mo Thin Films for the Application in Organic Thin Film Transistor (유기박막트랜지스터 응용을 위한 탄소가 도핑된 몰리브덴 박막의 특성)

  • Dong Hyun Kim;Yong Seob Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.588-593
    • /
    • 2023
  • The advantage of OTFT technology is that large-area circuits can be manufactured on flexible substrates using a low-cost solution process such as inkjet printing. Compared to silicon-based inorganic semiconductor processes, the process temperature is lower and the process time is shorter, so it can be widely applied to fields that do not require high electron mobility. Materials that have utility as electrode materials include carbon that can be solution-processed, transparent carbon thin films, and metallic nanoparticles, etc. are being studied. Recently, a technology has been developed to facilitate charge injection by coating the surface of the Al electrode with solution-processable titanium oxide (TiOx), which can greatly improve the performance of OTFT. In order to commercialize OTFT technology, an appropriate method is to use a complementary circuit with excellent reliability and stability. For this, insulators and channel semiconductors using organic materials must have stability in the air. In this study, carbon-doped Mo (MoC) thin films were fabricated with different graphite target power densities via unbalanced magnetron sputtering (UBM). The influence of graphite target power density on the structural, surface area, physical, and electrical properties of MoC films was investigated. MoC thin films deposited by the unbalanced magnetron sputtering method exhibited a smooth and uniform surface. However, as the graphite target power density increased, the rms surface roughness of the MoC film increased, and the hardness and elastic modulus of the MoC thin film increased. Additionally, as the graphite target power density increased, the resistivity value of the MoC film increased. In the performance of an organic thin film transistor using a MoC gate electrode, the carrier mobility, threshold voltage, and drain current on/off ratio (Ion/Ioff) showed 0.15 cm2/V·s, -5.6 V, and 7.5×104, respectively.

Observation of Densification Behavior during the Sintering of Ni-added $MoSi_2$ Powder Compacts (Ni을 첨가한 $MoSi_2$분말성형체의 소결시 치밀화거동의 관찰)

  • 이승익
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.298-303
    • /
    • 1997
  • The activated sintering behavior of $MoSi_2$ powder compacts with addition of 0.5 and 1.0 wt.%Ni during the sintering under As atmosphere was studied. The shrinkage was measured and the microstructures were observed by SEM (scanning electron microscopy) and BEI (backscattered electron image) along with the phase analysis by EDS during heating up to 155$0^{\circ}C$ and holding for various time at 155$0^{\circ}C$. The most of shrinkage occurred upon heating and 92% of theoretical density was attained after sintering for 1 hr at 155$0^{\circ}C$. However, little shrinkage ensued even for prolonged sintering over 1 hr at 155$0^{\circ}C$. A liquid film formed at about 135$0^{\circ}C$ along necks and grain boundaries. The polyhedral grain structure composed of $(Mo,Ni)_5Si_3$and $Ni_2Si$ across the $MoSi_2$ grain boundary developed at 155$0^{\circ}C$. It was concluded that the activated sintering of $MoSi_2$ powder by Ni led to the diffusion of Si into Ni decreasing the liquidus temperature and the enhanced diffusion of Mo and Si through such a liquid phase and/or interboundary of $(Mo,Ni)_5Si_3$.

  • PDF

Synthesis and Properties of Molybdenum and Tungsten Oxo-Nitrosyl Complexes of Methylthioamidoxime (산소-니트로실 착물의 연구(제3보): 티오메틸아미드옥심의 몰리브덴과 텅스텐 산소-니트로실 착물의 합성과 특성)

  • Roh, Soo Gyun;Oh, Sang Oh
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.28-36
    • /
    • 1996
  • The pentanuclear complexes have been obtained by the reactions of molybdenum(VI) and tungsten(VI) polynuclear complexes with molybdenum(O) and tungsten(O) dinitrosyl mononuclear complexes, and methylthioamidoxime. The prepared complexes (n-Bu4N)2[Mo4O12Mo(NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2](1), (n-Bu4N)2[W4O12Mo(NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2](2), (n-Bu4N)2[Mo4O12W (NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2] (3) have been characterized by elemental analysis, infrared, UV-visible and 1H NMR spectra. The complexes are elucidated the cis-{M(NO)2}2+(M = Mo, W) unit and a slight delocalization by spectroscopy. The structure of (n-Bu4N)2[W4O12Mo(NO) 2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2] was determined by X-ray single crystal diffraction. Crystal data are follows: Monoclinic, $P21}a$, a = 22.14(2) $\AA$, b = 14.93(1) $\AA$, c = 23.20(1) $\AA$, $\beta$ = 111.08(6) $\AA$, V = 7155(9) $\AA$, Z = 4, final R = 0.072 for 6191(I > $3\sigma(I)).$ The structure of complex forms two dinuclear [W2O5{CH3SCH2C(NH2)NHO}{CH3SCH2C(NH)NO}] and a central {Mo(NO)2} 2+ core. The geometric structure of the {Mo(NO)2} 2+unit is the formally cistype and C2v symmetry.

  • PDF

Thermal Properties of $Sm_{2}(MoO_{4})_{3}$ Single Crystal ($Sm_{2}(MoO_{4})_{3}$ 단결정의 열적특성)

  • Son, Jong-Yoon;Kim, Jae-Hyung;Kim, Joung-Bae;Lee, Kwang-Sei;Nam, Sang-Hee;Lee, Chan-Ku;Lee, Su-Dae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.94-97
    • /
    • 2002
  • Phase transitions of the $Sm_{2}(MoO_{4})_{3}$ single crystal were studied through thermal analysis, x-ray methods and SEM/EDS. $Sm_{2}(MoO_{4})_{3}$ undergoes the ferroelastic and ferroelectric phase transition at $198^{\circ}C$. With increasing temperature, the second phase transition occurs at $928^{\circ}C$. From TG analysis, the mass loss of $Sm_{2}(MoO_{4})_{3}$ exhibits an anomalous behavior at about $650^{\circ}C$ and the curves increased monotonically to $1132^{\circ}C$. SEM and EDS show that the escape of ${MoO_{4}^{2-}$ tetrahedra from the lattice of $Sm_{2}(MoO_{4})_{3}$ increase above $928^{\circ}C$, so $Sm_{2}(MoO_{4})_{3}$ has a very rough surface and internal cracks.

  • PDF

Effect of Temperature on $H_2$ Spillover over $Pt/H_xMoO_3$ (Pt를 담지한 $H_xMoO_3$촉매의 수소 이동 속도에 미치는 온도의 영향)

  • 김진걸
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.114-117
    • /
    • 2004
  • Rates of $H_2$ uptake into $Pt/MoO_3$ were measured for the noncalcined and $200^{\circ}C$ calcined $Pt/MoO_3$. Amount of $H_2$ uptake for $200^\circ{C}$calcined $Pt/MoO_3$ was greater than the amount of noncalcined $Pt/MoO_3$. From these two experiments, it was found that the rates of $H_2$ desorption were proportional to the increase of desorption temperature. XPS demonstrated that Cl reduced more faster in ITR after calcination at $200^{\circ}C$. This inducd smaller amount of residual chlorine at adlineation sites between Pt and $MoO_3$ substrates. This resulted in opening the more channel of hydrogen pathway into more $MoO_3$particles and controled the kinetics of hydrogen uptake.

  • PDF

Effect of MoO3 Morphological Change over Hydrogen Spillover Kinetics (MoO3 Morphology 변화가 수소 Spillover에 미치는 영향)

  • Kim, Jin Gul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1109-1113
    • /
    • 1999
  • sothemal reduction at $50^{\circ}C$ using $Pt/MoO_3$ or $Pt/MoO_3/SiO_2$ made by dry impregnation or physical mixture of $Pt^{\circ}$ and $MoO_3$ demonstrated that the $H_2$ uptake vis $H_2$ spillover from Pt into $MoO_3$ was enhanced as calcination temperature was increased. Surface area of exposed Pt crystallites measured by CO chemisorption was decreased with higher calcination temperature. In addition, TEM showed that $MoO_x$ overlayers were formed on Pt crystallites after calcination at $400^{\circ}C$. Consequentially, it was found that this increased active contact sites between Pt and $MoO_3$ due to surface morphological change was one of the dominant factors for this increased $H_2$uptake via $H_2$ spillover from Pt crystallites into $MoO_3$.

  • PDF

A Study on the Thermal Properties of Mo-Cu Composites as a Heat Sink Material (Heat Sink용 Mo-Cu 합금 재료의 열적 특성)

  • Hwang, Chang-Gyu;Jang, Gun-Eik;Park, Chi-Wan;Kim, Tae-Hyoung;Woo, Yong-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.311-314
    • /
    • 2003
  • In Mo-Xwt%Cu compound, Physical and thermal properties were systematically evaluated in terms of Cu contents and sintering temperature. Typically Cu contents were varied from 15 to 25wt% and also the Sintering temperatures were changed from $1115^{\circ}C$ to $1350^{\circ}C$. In physical properties, Mo-15~25wt%Cu has the maximum density of 95% while Mo-20wt%Cu has the maximum thermal conductivity of 165.179[${\mu}/m^{\circ}C$] at sintering temperature of $1300^{\circ}C$. Especially, Mo-25wt%Cu has the maximum hardness of 173.4 at sintering temperature of $1150^{\circ}C$ and the maximum thermal expansion of 9.0[W/mK] as the specimen heated in the range of temperature from $50^{\circ}C$ to $400^{\circ}C$. Based on electrical conductivity measurements, the relative density increased within creasing Cu contents and the values were in the range of 100~150[W/mK].

Thermal Stability of Ta-Mo Alloy Film on Silicon Dioxide (실리콘 산화막에 대한 Ta-Mo 합금 게이트의 열적 안정성)

  • 노영진;이충근;홍신남
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.361-366
    • /
    • 2004
  • The interface stability of Ta-Mo alloy film on SiO$_2$ was investigated. Ta-Mo alloy films were formed by co-sputtering method, and the alloy composition was varied by controlling Ta and Mo sputtering power, When the atomic composition of Ta was about 91%, the measured work function was 4.24 eV that is suitable for NMOS gate. To identify interface stability between Ta-Mo alloy film and SiO$_2$, C-V and XRD measurements were performed on the samples annealed with rapid thermal processor between $600^{\circ}C$ and 90$0^{\circ}C$. Even after 90$0^{\circ}C$ rapid thermal annealing, excellent interface stability and electrical properties were observed. Also, thermodynamic analysis was studied to compare with experimental results.

The Effect of P and Mo for Thermal and Chemical Properties of Fe-PC-B-Al-Mo Amorphous Alloys (Fe-P-C-B-Al-Mo계 비정질합금의 열적.화학적 성질에 미치는 P 및 Mo의 영향)

  • Gook, Jin-Seon;Chon, Woo-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.76-81
    • /
    • 2002
  • The melt-spun amorphous $Fe_{77-X}P_{13}C_4B_4Al_2Mo_X$(x=4~10) and $Fe_{82-X}P_XC_4B_4Al_2Mo_8$(x=9~15) alloys were found to exhibit a large supercooled liquid region(${\Delta}T_x$) exceeding 40 K before crystallization. The largest ${\Delta}T_x$ for the glassy alloys containing Mo reaches as large as 65 K for the $Fe_{69}P_{13}C_4B_4Al_2Mo_8$ alloy. The corrosion behavior of the amorphous $Fe_{77-X}P_{13}C_4B_4Al_2Mo_X$(x=4~15) and $Fe_(82-X)P_XC_4B_4Al_2Mo_8$ (x=9~17) alloys were examined by electrochemical measurements in 9M $H_2SO_4$ solution at 303 K. The addition of Mo(or P) for replacing some portion of Fe is effective in improving the corrosion resistance of the investigated Fe-based glassy alloys. They are spontaneously passivated and have a wide passive region with low passive current density.

Synthesis and Characterization of Nb, Mo-doped and Nb/Mo-codoped Monoclinic VO2 Nanoparticles and Their Thin Films by Hydrothermal/Post-Thermal Transformation and Wet-Coating Method

  • Kim, Jongmin;Jung, Young Hee;Kwak, Jun Young;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.94-101
    • /
    • 2019
  • Nb, Mo-doped and Nb/Mo-codoped $VO_2(M)$ nanocrystallites with various doping levels were synthesized for the first time by a hydrothermal and post thermal transformation method. The reversible phase transition characteristics of those doped $VO_2(M)$ was comparatively investigated. Nb-doping of $VO_2(M)$ by this method resulted in a very efficient lowering of the transition temperature ($T_c$) with a rate of $-16.7^{\circ}C/at.%$ that is comparable to W-doping, while Mo-doping did not give a serious reduction of $T_c$ with only a rate of $-5.1^{\circ}C/at.%$. Nb/Mo-codoping gave a similar result to Nb-doping without a noticeable difference. The thin films of Nb-doped and Nb/Mo-codoped $VO_2(M)$ with a thickness of ca. 120 nm were prepared by a wet-coating of the nanoparticle-dispersed solutions. Those films showed a good thermochromic modulation of near infrared radiation with 30-35% for Nb-doped $VO_2(M)$ and 37-40% for Nb/Mo-codoped ones. Nb/Mo-codoped $VO_2(M)$ film showed slightly enhanced thermochromic performance compared with Nb-doped $VO_2(M)$ film.