Browse > Article
http://dx.doi.org/10.5012/jkcs.2019.63.2.94

Synthesis and Characterization of Nb, Mo-doped and Nb/Mo-codoped Monoclinic VO2 Nanoparticles and Their Thin Films by Hydrothermal/Post-Thermal Transformation and Wet-Coating Method  

Kim, Jongmin (Department of Chemistry, Pukyong National University)
Jung, Young Hee (Research Laboratory, Adchro, Inc.)
Kwak, Jun Young (Research Laboratory, Adchro, Inc.)
Kim, Yeong Il (Department of Chemistry, Pukyong National University)
Publication Information
Abstract
Nb, Mo-doped and Nb/Mo-codoped $VO_2(M)$ nanocrystallites with various doping levels were synthesized for the first time by a hydrothermal and post thermal transformation method. The reversible phase transition characteristics of those doped $VO_2(M)$ was comparatively investigated. Nb-doping of $VO_2(M)$ by this method resulted in a very efficient lowering of the transition temperature ($T_c$) with a rate of $-16.7^{\circ}C/at.%$ that is comparable to W-doping, while Mo-doping did not give a serious reduction of $T_c$ with only a rate of $-5.1^{\circ}C/at.%$. Nb/Mo-codoping gave a similar result to Nb-doping without a noticeable difference. The thin films of Nb-doped and Nb/Mo-codoped $VO_2(M)$ with a thickness of ca. 120 nm were prepared by a wet-coating of the nanoparticle-dispersed solutions. Those films showed a good thermochromic modulation of near infrared radiation with 30-35% for Nb-doped $VO_2(M)$ and 37-40% for Nb/Mo-codoped ones. Nb/Mo-codoped $VO_2(M)$ film showed slightly enhanced thermochromic performance compared with Nb-doped $VO_2(M)$ film.
Keywords
$VO_2$(M); Thermochromic; Semiconductor-to-metal phase transition; Nb-doping; Nb/Mo-codoping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Morin, F. J. Phys. Rev. Lett. 1959, 3, 34.   DOI
2 (a) Anderson, G. Acta Chem. Scand. 1954, 8, 1599.   DOI
3 (b) Westman, S. Acta Chem. Scand. 1961, 15, 217.   DOI
4 (a) Kamalisarvestani, M; Saidur, R.; Mekhilef, S.; Javadi, F. S. Ren. Sust. Ener. Rev. 2013, 26, 353.   DOI
5 (b) Gao, Y.; Luo, H.; Zhang, Z.; Kang, L.; Chen, Z.; Du, J.; Kanehira, M.; Cao, C. Nano Ener. 2012, 1, 221.   DOI
6 (c) Granqvist, C. G.; Lansaker, P. C.; Mlyuka, N. R.; Niklasson, G. A.; Avendano, E. Sol. Energy Mater. Sol. Cells 2009, 93, 2032.   DOI
7 Goodenough, J. B. J. Solid State Chem. 1971, 3, 490.   DOI
8 (a) Tang, C.; Georgopoulos, P.; Fine, M. E.; Cohen, J. B. Phys. Rev. B 1985, 31, 1000.   DOI
9 (b) Zhang, J.; He, H.; Xie, Y.; Pan, B. J. Chem. Phys. 2013, 138, 114705.   DOI
10 (a) Cao, J.; Ertekin, E.; Srinivasan, V.; Fan, W.; Huang, S.; Zheng, H.; Yim, J. W. L.; Khanal, D. R.; Ogletree, D. F.; Grossmanan, J. C.; Wu, J. Nat. Nanotechnol. 2009, 4, 732.   DOI
11 (b) Zhang, J.; He, H.; Xie, Y.; Pan, B. Phys. Chem. Chem. Phys. 2013, 15, 4687.   DOI
12 (a) Horlin, T.; Nikelwski, T.; Nygren, M. Mat. Res. Bull. 1972, 7, 1515.   DOI
13 (b) Tang, C; Georgopoulos, P.; Fine, M. E. Cohen, J. B. Phys. Rev. B 1985, 15, 31.   DOI
14 (c) Sobhan, M. A.; Kivaisi, R. T.; Stjerna, B.; Granqvist, C. G. Sol. Energy Mater. Sol. Cells 1996, 44, 451.   DOI
15 (d) Li, G.; Chao, K.; Peng, H.; Chen, K.; Zhang, Z. Inorg. Chem. 2007, 46, 5787.   DOI
16 (a) Savborg, O.; Nygren, M. Phys. Status Solidi A 1977, 43, 645.   DOI
17 (b) Kleinschmidt, P. Phys. Lett. 1974, 47A, 205.   DOI
18 (c) Febritchnyi, P. B.; Bayard, M.; Pouchard, M.; Hagenmuller, P. Solid State Commun. 1974, 14, 603.   DOI
19 (a) Greenberg, C. B. Thin Solid Films 1983, 110, 73.   DOI
20 (b) Piccirillo, C.; Binions, R.; Parkin, I. P. Eur. J. Inorg. Chem. 2007, 4050.
21 (c) Manning, T. D.; Parkin, I. P.; Blackman, C.; Qureshi, U. J. Mater. Chem. 2005, 15, 4560.   DOI
22 (a) Batista, C.; Carneiro, J.; Ribeiro, R.; Teixeira, V. J. Nanosci. Nanotech. 2011, 11, 9042.   DOI
23 (b) Batista, C.; Ribeiro, R.; Teixeira, V. Nanoscale Res. Lett. 2011, 6, 301.   DOI
24 Nishikawa, M.; Nakajima, T.; Kumagai, T.; Okutani, T.; Tsuchiya, T. J. Cerm. Soc. Japan 2011, 119, 577.   DOI
25 Park, H.; Kim, J.; Jung, Y. H.; Kim, Y. I. J. Korean Chem. Soc. 2017, 61, 57.   DOI
26 (a) JCPDS 81-2392.
27 (b) JCPDS 43-1051.
28 Patterson, A. Phys. Rev. 1939, 56, 978.   DOI
29 (a) Liu, X.; Xie, G.; Huang, C.; Xu, Q.; Zhang, Y.; Luo, Y. Mater. Lett. 2008, 62, 1878.   DOI
30 (b) Liu, J.; Li, Q.; Wang, T.; Yu, D.; Li, Y. Angew. Chem. Int. Ed. 2004, 43, 5048.   DOI
31 Hanlon, T. J.; Coath, J. A. Richardson, M. A. Thin Solid Films 2003, 436, 269.   DOI
32 (c)Zhang, Y.; Zhang, J.; Zhang, X.; Deng, Y.; Zhong, Y.; Huang, C.; Liu, X.; Mo, S. Ceram. Int. 2013, 39, 8363.   DOI
33 Zhang, R.; Yin, C.; Fu, Q.; Li, C.; Qian, G.; Chen, X.; Lu, C.; Yuan, S.; Zhao, X.; Tao, H. Cerm. Int. 2018, 44, 2809.   DOI
34 Bastista, C; Teixeira, V.; Ribeiro, R. M. J. Nanosci. Nanotechnol. 2010, 10, 1393.   DOI
35 Li, D.; Li, M.; Pan, J.; Luo, Y.; Wu, H.; Zhang, Y.; Li, G. App. Mater. Interfaces 2014, 6, 6555.   DOI