• Title/Summary/Keyword: Mixed linear model

Search Result 419, Processing Time 0.021 seconds

Sire Evaluation of Count Traits with a Poisson-Gamma Hierarchical Generalized Linear Model

  • Lee, C.;Lee, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.642-647
    • /
    • 1998
  • A Poisson error model as a generalized linear mixed model (GLMM) has been suggested for genetic analysis of counted observations. One of the assumptions in this model is the normality for random effects. Since this assumption is not always appropriate, a more flexible model is needed. For count traits, a Poisson hierarchical generalized linear model (HGLM) that does not require the normality for random effects was proposed. In this paper, a Poisson-Gamma HGLM was examined along with corresponding analytical methods. While a difficulty arises with Poisson GLMM in making inferences to the expected values of observations, it can be avoided with the Poisson-Gamma HGLM. A numerical example with simulated embryo yield data is presented.

Modelling Count Responses with Overdispersion

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.761-770
    • /
    • 2012
  • We frequently encounter outcomes of count that have extra variation. This paper considers several alternative models for overdispersed count responses such as a quasi-Poisson model, zero-inflated Poisson model and a negative binomial model with a special focus on a generalized linear mixed model. We also explain various goodness-of-fit criteria by discussing their appropriateness of applicability and cautions on misuses according to the patterns of response categories. The overdispersion models for counts data have been explained through two examples with different response patterns.

Predictive analysis in insurance: An application of generalized linear mixed models

  • Rosy Oh;Nayoung Woo;Jae Keun Yoo;Jae Youn Ahn
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.5
    • /
    • pp.437-451
    • /
    • 2023
  • Generalized linear models and generalized linear mixed models (GLMMs) are fundamental tools for predictive analyses. In insurance, GLMMs are particularly important, because they provide not only a tool for prediction but also a theoretical justification for setting premiums. Although thousands of resources are available for introducing GLMMs as a classical and fundamental tool in statistical analysis, few resources seem to be available for the insurance industry. This study targets insurance professionals already familiar with basic actuarial mathematics and explains GLMMs and their linkage with classical actuarial pricing tools, such as the Buhlmann premium method. Focus of the study is mainly on the modeling aspect of GLMMs and their application to pricing, while avoiding technical issues related to statistical estimation, which can be automatically handled by most statistical software.

Dirichlet Process Mixtures of Linear Mixed Regressions

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.625-637
    • /
    • 2015
  • We develop a Bayesian clustering procedure based on a Dirichlet process prior with cluster specific random effects. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet process was implemented to calculate posterior probabilities when the number of clusters was unknown. Our approach (unlike its counterparts) provides simultaneous partitioning and parameter estimation with the computation of the classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. We find that the proposed Dirichlet process mixture model with cluster specific random effects detects clusters sensitively by combining vague edges into different clusters. Examples are given to show how these models perform on real data.

Likelihood-Based Inference on Genetic Variance Component with a Hierarchical Poisson Generalized Linear Mixed Model

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1035-1039
    • /
    • 2000
  • This study developed a Poisson generalized linear mixed model and a procedure to estimate genetic parameters for count traits. The method derived from a frequentist perspective was based on hierarchical likelihood, and the maximum adjusted profile hierarchical likelihood was employed to estimate dispersion parameters of genetic random effects. Current approach is a generalization of Henderson's method to non-normal data, and was applied to simulated data. Underestimation was observed in the genetic variance component estimates for the data simulated with large heritability by using the Poisson generalized linear mixed model and the corresponding maximum adjusted profile hierarchical likelihood. However, the current method fitted the data generated with small heritability better than those generated with large heritability.

Mixed Integer Linear Programming Model to Determine the Optimal Levels of Technical Attributes in QFD under Multi-Segment Market (다수의 마켓 세그먼트 하에서 품질기능전개 시(時) 기술특성들의 최적 값을 결정하기 위한 혼합정수계획모형)

  • Yang, Jae Young;Yoo, Jaewook
    • Korean Management Science Review
    • /
    • v.33 no.2
    • /
    • pp.75-87
    • /
    • 2016
  • Quality function deployment (QFD) is a widely adopted customer-oriented product development methodology by analyzing customer requirements. It is a main activity in QFD planning process to determine the optimal values of the technical attributes (TAs) so as to achieve the customer requirements (CRs) from the House of Quality (HoQ). In most of the previous research, all the TAs in QFD are assumed to have either continuous or discrete values. In the real world applications, the continuous TAs and the discrete TAs are often mixed in QFD. In this paper, a mixed integer linear programming model is formulated to obtain the optimal values for the continuous TAs and the discrete TAs in QFD planning as well as Branch and Bound (B and B) algorithm is proposed as the solution approach. Finally, the proposed model and solution approach are illustrated with an office chair under multi-segment market, and the sensitivity analysis is performed to study how the proposed model and its solutions respond to the variation for the two elements which are budget and CRs' weights.

Genetic Parameter Estimation with Normal and Poisson Error Mixed Models for Teat Number of Swine

  • Lee, C.;Wang, C.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.910-914
    • /
    • 2001
  • The teat number of a sow plays an important role for weaning pigs and has been utilized in selection of swine breeding stock. Various linear models have been employed for genetic analyses of teat number although the teat number can be considered as a count trait. Theoretically, Poisson error mixed models are more appropriate for count traits than Normal error mixed models. In this study, the two models were compared by analyzing data simulated with Poisson error. Considering the mean square errors and correlation coefficients between observed and fitted values, the Poisson generalized linear mixed model (PGLMM) fit the data better than the Normal error mixed model. Also these two models were applied to analyzing teat numbers in four breeds of swine (Landrace, Yorkshire, crossbred of Landrace and Yorkshire, crossbred of Landrace, Yorkshire, and Chinese indigenous Min pig) collected in China. However, when analyzed with the field data, the Normal error mixed model, on the contrary, fit better for all the breeds than the PGLMM. The results from both simulated and field data indicate that teat numbers of swine might not have variance equal to mean and thus not have a Poisson distribution.

A Study of HME Model in Time-Course Microarray Data

  • Myoung, Sung-Min;Kim, Dong-Geon;Jo, Jin-Nam
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.415-422
    • /
    • 2012
  • For statistical microarray data analysis, clustering analysis is a useful exploratory technique and offers the promise of simultaneously studying the variation of many genes. However, most of the proposed clustering methods are not rigorously solved for a time-course microarray data cluster and for a fitting time covariate; therefore, a statistical method is needed to form a cluster and represent a linear trend of each cluster for each gene. In this research, we developed a modified hierarchical mixture of an experts model to suggest clustering data and characterize each cluster using a linear mixed effect model. The feasibility of the proposed method is illustrated by an application to the human fibroblast data suggested by Iyer et al. (1999).

Design of Mixed Integer Linear Programming Model for Transportation Planning (혼합 정수 선형 계획법을 이용한 수송 계획 모델 설계)

  • Park, Yong Kuk;Lee, Min Goo;Jung, Kyung Kwon;Won, Young-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.166-174
    • /
    • 2016
  • In this paper, we developed a mixed-integer linear programming model for transportation planning of athletes in sports events. The transportation planning of athletes involves finding the lowest-cost and fastest-time plan for distributing athletes from multiple accommodation to stadium. The decision variables associate with the number of driving events, and the total transportation cost is the objective function that needs to be minimized. The proposed method uses mixed integer linear programming to solve transportation problem, thus the global optimality is guaranteed. In order to verify the effectiveness of proposed method, we performed simulation and built the sports event management service platform (SEMSP) for transportation planning.

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.