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Abstract
Generalized linear models and generalized linear mixed models (GLMMs) are fundamental tools for pre-

dictive analyses. In insurance, GLMMs are particularly important, because they provide not only a tool for
prediction but also a theoretical justification for setting premiums. Although thousands of resources are available
for introducing GLMMs as a classical and fundamental tool in statistical analysis, few resources seem to be avail-
able for the insurance industry. This study targets insurance professionals already familiar with basic actuarial
mathematics and explains GLMMs and their linkage with classical actuarial pricing tools, such as the Bühlmann
premium method. Focus of the study is mainly on the modeling aspect of GLMMs and their application to pric-
ing, while avoiding technical issues related to statistical estimation, which can be automatically handled by most
statistical software.

Keywords: generalized linear model, generalized linear mixed model, predictive analysis, ratemak-
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1. Introduction

Generalized linear models (GLMs) and generalized linear mixed models (GLMMs) are fundamental
tools for predictive analysis. These statistical tools have motivated many modern insurance-pricing
techniques (Nelder and Verrall, 1997; Antonio and Beirlant, 2007; Wuthrich, 2019). Meanwhile, the
credibility theory is a field within actuarial science that focuses on calculating risk premiums. It orig-
inated from Mowbray (1914) and Whitney (1918), who aimed to determine a premium that balanced
the experience of an individual policyholder with that of a group of similar policyholders (Nelder
and Verrall, 1997). While GLMMs and credibility theory are both widely used in risk classification
in non-life insurance sectors, such as auto insurance, practitioners in these sectors tend to be more
familiar with credibility theory.

GLMMs have several advantages over credibility theory. They offer a wider range of models and
can be easily fitted and tested using standard statistical software. As a result, GLMMs provide addi-
tional modeling options for various actuarial problems, such as premium ratings and claims reserves.
Furthermore, it is well known that credibility theory is closely related to the framework of GLMMs
(Nelder and Verrall, 1997). While the insurance literature has some initial discussion on credibility
theory based on GLMMs (Ohlsson, 2008; Lai and Sun, 2012), most assume above-average knowledge
of the statistical aspects of GLMM, which makes its application inaccessible to traditional insurance
practitioners.
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This study aims to explain GLMs and GLMMs in plain actuarial language and demonstrate how to
obtain a simple and fair premium. The remainder of the article is organized as follows. Section 2 intro-
duces the notations used. Section 3 provides the general settings of risk classification procedures for
insurance using the language of GLMs. Sections 4 and 5 explain the modeling and prediction methods
for GLMs and GLMMs, respectively. Section 6 provides the theoretical link between GLMMs and
credibility theory. Finally, the results are discussed in Section 7.

2. Definitions and notations

We denote N, N0, R, and R+ as the set of natural numbers, the set of non-negative integers, the set of
real numbers, and the set of positive real numbers, respectively. We define Nit as the number of claims
in the tth policy year for the ith policyholder. We denote the realization of Nit as nit. Actuarial science
literature often refers to Nit as the frequency of insurance claims.

We differentiate a fixed effect from a random effect. The former is based on the policyholders’
observed risk characteristics, whereas the latter is based on the policyholders’ unobserved risk char-
acteristics after controlling for fixed effects. Let the data matrix Xi of the ith policyholder have a
dimension of τ × (m + 1), where τ is the number of observed years and m is the total number of
explanatory variables. Denote

Xi =


Xi1
Xi2
...

Xiτ

 =


1 Xi11 Xi12 · · · Xi1m

1 Xi21 Xi22 · · · Xi2m
...

1 Xiτ1 Xiτ2 · · · Xiτm

 ,
where Xit := (1, Xit1, . . . , Xitm) is the (m + 1)-dimensional row vector of the a priori risk characteristics
of the ith policyholder in the tth year. Let γi denote the policyholder-specific random effect of the
ith policyholder. For simplicity, we assume that the random effect γi does not have the subscript
t, because we assume that the a priori risk characteristics remain constant over time. Under GLM
and GLMM, the distribution within the exponential dispersion family (EDF) has been addressed by
McCullagh and Nelder (1989) and Breslow and Clayton (1993). EDF can be viewed as an abstraction
of many well-known distributions, including normal, gamma, and Poisson distributions. This provides
a unified approach to statistical modeling. However, owing to its abstract form, it may be difficult to
understand intuitively. Therefore, we do not explore the benefits of a generalized form of EDF in
this study, nor do we attempt to identify the best parametric assumption for the distribution that fits
the data. Instead, we focus primarily on Poisson distribution because the general idea can easily be
extended to other distributions within the EDF.

We use Pois(λ) to denote a Poisson distribution with mean λ. Using gamma(µ, ψ), we denote a
gamma distribution whose mean and variance parameters are µ and µ2ψ. Gamma(µ, ψ) can also be
interpreted as a gamma distribution with the shape parameter 1/ψ and scale parameter µψ. We use
N(µ, σ2) to denote a normal distribution, whose mean and variance are given by µ andσ2, respectively.
For Y ∼ N(µ, σ2), we define the distribution of exp(Y) as lognormal(µ, σ2).

3. General setting

In terms of data, for each policyholder i = 1, . . . , z in τ policy years, with m explanatory variables, the
dataset has the following format:

(ni1, . . . , niτ, xi1, . . . , xiτ) , (3.1)
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Table 1: Typical data example

ID Calendar year Salary (Xit1) Home value (Xit2) · · · Age (Xitm) Frequency (Nit)
1 2017 1500 20500 · · · 37 0
1 2018 1470 20900 · · · 38 1
1 2019 1563 20500 · · · 39 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

102 2017 1401 45000 · · · 52 2
102 2018 1573 47000 · · · 53 0
102 2019 1562 50000 · · · 54 0

where z is the total number of policyholders and xit = (xit1, xit2, . . . , xitm). An example of a typical
dataset is listed in Table 1.

First, we are interested in a fair premium, defined as E [Niτ∗ ], for the ith policyholder in calendar
year τ∗ = τ + 1. Throughout this study, although we do not specify so in the mathematical notation,
we assume that the explanatory variables are always known and conditioned. Hence, for example, the
fair premium E [Niτ∗ ] should be understood as

E [Niτ∗ ] = E [Niτ∗ | xi1, . . . , xiτ, xiτ∗ ] .

The fair premium for each policy year is determined solely by the fixed effect. In insurance, a fair
premium based on the fixed effect is called the a priori rate and the risk classification process based
on the fixed effect is called the a priori risk classification procedure. The premium determined by the
a priori risk classification procedure can be further updated based on the claim history as follows:

E [Niτ∗ | ni1, . . . , niτ] , (3.2)

which is called the a posteriori rate. This premium adjustment mechanism based on claim history is
called the a posteriori risk classification procedure. Typically, in insurance, the risk characteristics for
a year are known at the beginning of each year. Hence, in predicting the premium in the τ∗th year, the
explanatory variables xi1, . . . , xiτ∗ are assumed to be known. In the following sections, we examine
the a posteriori risk classification procedure in (3.2) under various model assumptions.

4. Generalized linear model

GLMs are a flexible method that extend the fixed-effect linear regression model to response vari-
ables, which are not normally distributed. The expected value of Nit depends on the observed risk
characteristics with the following relation:

E [Nit] = η−1 (Xitβ) ,

where Xitβ is the linear predictor and η(·) is the link function, which relates E [Nit] to a linear predictor.

4.1. Modelling and estimation of the GLM

Model 1. (Poisson GLM) Consider z different policyholders with the observation given in the form
of (3.1) and assume mutual independence among policyholders. Furthermore, we assume the follow-
ing joint distribution of (Ni1, . . . ,Niτ∗ ):

i. The distribution of the ith policyholder’s frequency Nit in the tth year is specified as

Nit ∼ Pois (Λit) ,
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where

Λit := exp (Xitβ)

= exp (β0 + β1Xit1 + · · · + βmXitm)
(4.1)

with the coefficient parameters (fixed effects) β := (β0, β1, . . . , βm)′. Here, we assume the link
function η to be a log function that gives the exponential expression in (4.1).

ii. Ni1, . . . ,Niτ∗ are independent.

In Model 1, the only unknown parameters are the coefficients β shared by each policyholder.
Hence, once the coefficients β are known, the conditional distribution of frequency for each policy-
holder in the future calendar year τ∗ = t + 1 can be determined exactly as

Niτ∗ ∼ Pois (Λiτ∗ ) ,

with the a priori rate for the ith policyholder in calendar year τ∗ given by E [Niτ∗ ] = Λiτ∗ .
We assume that we have a dataset in the form of (3.1) with z policyholders and that each policy-

holder is observed for τ years. Then, the log-likelihood function for Model 1 is written as

` (β) :=
z∑

i=1

τ∑
t=1

log
(

fβ (nit)
)
,

where fβ (nit) is the probability mass function of the Poisson distribution given by

fβ (nit) :=
exp (−Λit) (Λit)nit

nit!
,

where Λit = exp(Xitβ). For the estimation of unknown coefficients β, typically, maximum likelihood
estimation (MLE) is considered and the estimator of β is defined as

β̂ := arg maxβ∈Rm+1 ` (β) .

4.2. Prediction in the GLM

In this subsection, we predict the a posteriori rate in (3.2), which is the premium in the τ∗th year. given
the claim history up to the τth year. Under the settings in Model 1, the a posteriori rate defined in (3.2)
can be obtained as

E [Niτ∗ | ni1, . . . , niτ] = E [Niτ∗ ] = Λiτ∗ (4.2)

based on the assumption of independence in Model 1. The a posteriori rate in (4.2) coincides with the
a priori rate. As (4.2) shows, the a posteriori rate is not a function of the past claim history under the
setting in Model 1 and there is no premium adjustment by the claim history ni1, . . . , niτ.

4.3. Data example

Throughout this study, we use the dataset for collision coverage on vehicles collected by the Wisconsin
Local Government Property Insurance Fund (LGPIF) from 2006 to 2011 (Frees et al., 2016). Collision
coverage covers the impact of a vehicle on an object, the impact of a vehicle on an attached vehicle,
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Table 2: Observable policy characteristics used as covariates

Categorical Description Proportionsvariable

Entity type

Type of local government entity
Miscellaneous 5.03%

City 9.66%
County 11.47%
School 36.42%
Town 16.90%

Village 20.52%
Continuous Min Mean Maxvariable

avgCoverage Collision coverage amount 0.009 1.097 13.135

Table 3: Estimation results under Model 1

Parameter Est Std.dev z p-value
Fixed effect
(Intercept) β̂0 −2.339 0.302 −7.758 <0.0001 *

Type = City β̂1 1.618 0.314 5.158 <0.0001 *
Type = County β̂2 2.633 0.307 8.572 <0.0001 *
Type = School β̂3 1.021 0.309 3.310 <0.0001 *
Type = Town β̂4 −0.730 0.387 −1.888 0.0591

Type = Village β̂5 0.835 0.317 2.632 0.0085 *
avgCoverage β̂6 0.195 0.010 19.731 <0.0001 *

or the overturning of a vehicle. The datasets contain 497 government entities. Each policyholder has
six levels of entity types and average coverage over time as explanatory variables as shown in Table
2. For further explanation of the dataset, refer to Oh et al. (2020).

To fit the GLM in Model 1, we can use the glm function in R, whose form is given by
> glm(formula, family=familytype(link=linkfunction), data=dataset,. . .).

The specific form of the function under the setting in Model 1 is given by
> glm(Frequency∼factor(entityType)+avgCoverage,

family=poisson(link=log), data=mydata).

If the categorical variable (entity type) is presented as a dummy variable (e.g., TypeCity, TypeCounty)
in a dataset, the formula specifying the fixed effects part of the function is modified as follows:
> glm(Frequency∼TypeCity+TypeCounty+· · · +avgCoverage,

family=poisson(link=log), data=mydata).

The estimation results of this model are summarized in Table 3. The asterisk (*) signs indicate that
the parameters are significant at the significance level of 0.05. Based on the table, the a posteriori rate,
which is equivalent to the a priori rate, can be obtained as

Ê [Nit] = exp
(
Xit β̂

)
. (4.3)

Hence, the estimated parameter β̂1, for example, can be interpreted as the effect of the entity type
of the county compared to the baseline, miscellaneous entity type, in the logarithm of the estimated
a posteriori rate for the same average coverage. The table indicates that the county entity type is
expected to incur more accidents than any other entity type having the same amount of coverage.
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Within the same entity type, a higher average coverage corresponds to a higher expected accident
count.

Moreover, the third policyholder in the dataset, for example, is in a county and has an average
coverage of 2.495, so that under Model 1, the estimated expectation is

exp
(
β̂0 + β̂2 + β̂6 2.495

)
= exp (−2.339 + 2.633 + 0.195 × 2.495)

= 2.182.

5. Generalized linear mixed model

GLMMs are a popular method to model correlated data; they extend GLMs by including random
effects in the predictor. The conditional expected value of Nit |γi depends on the observed risk charac-
teristics using the following relation:

E
[
Nit | γi

]
= η−1 (Xitβ + γi) ,

where γi is the random effect and η(·) is a link function that converts E
[
Nit |γi

]
into a linear predictor

Xitβ. The random effect γi measures the difference between the average score of policyholder i and
the average score in the portfolio.

5.1. Modelling and estimation of the GLMM

In Model 1, we assume that the selected explanatory variable Xi1, . . . , Xiτ∗ can explain the distribution
of the frequency. However, in reality, it is almost impossible to describe human behavior and contrib-
utors are often not observed or overlooked. These unobserved components can be used in a regression
setting, as shown in the following example:

Example 1. Consider Model 1 with three explanatory variables: Xit1, Xit2, and Xit3. If we assume
that they are observed, then the a priori premium is

Λit = exp (β0 + β1Xit1 + β2Xit2 + β3Xit3) .

Now, we assume that only the first explanatory variable Xit1 is observed and the other explanatory
variables, Xit2 and Xit3, are not. Then, a reasonable description of the a priori premium for frequency
under this assumption is

Λit := exp (β0 + β1Xit1) .

If the unobserved explanatory variables are denoted as

γi := Xit2 + Xit3,

where the explanatory variables are assumed invariant over time, we have the following conditional
model:

Nit | γi ∼ Pois
(
exp (β0 + β1Xit1 + γi)

)
. (5.1)

By further defining Ri := exp(γi), the conditional distribution in (5.1) can be represented as

Nit | Ri ∼ Pois (RiΛit) .
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Regardless of whether observed or unobserved, the explanatory variables can also be assumed to
be random variables. By placing an additional distributional assumption on the unobserved explana-
tory variables, Example 5.1 can be formally represented as follows:

Model 2. (Poisson GLMM) Consider z policyholders with the observation given in the form of (3.1),
assuming mutual independence among policyholders. Furthermore, we assume the following condi-
tional joint distribution of (Ni1, . . . ,Niτ∗ ):

i. Conditional on the random effect Ri, the distribution of the ith policyholder’s frequency Nit in the
tth year is specified as

Nit | Ri ∼ Pois (RiΛit) ,

where

Λit := exp (Xitβ)

= exp (β0 + β1Xit1 + · · · + βmXitm)
(5.2)

with the coefficient parameters (fixed effects) β := (β0, β1, . . . , βm)′. Here, we assume the link
function η to be a log function that gives the exponential expression in (5.2).

ii. The random effect Ri follows distribution function G with a parameter ψ.

iii. Furthermore, we assume that Ni1, . . . ,Niτ∗ are independent conditional on Ri.

In the case of a normal random effect, that is, γi ∼ N(0, σ2), we have Ri ∼ lognormal(0, σ2).
Otherwise, if the random effect distribution is non-normal, the mixed model is called a hierarchical
generalized linear mixed model (HGLMM) (Lee and Nelder, 1996). However, we do not differentiate
between GLMMs and HGLMMs in this study. Although it is possible to assume that some of the
parameters in (5.2) are random effects, known as random slopes in the classical GLMM literature,
we do not pursue this direction for the sake of simplicity. We refer the reader to Zimmer (2018) for
information on the impact of random slopes on insurance pricing.

In Model 2, the mean of the random effect Ri is often set to be one for the identifiability issue. For
example, we may assume

Ri ∼ gamma (1, ψ) (5.3)

with the mean of 1 and the dispersion parameter ψ. We refer to Section 2 for the details of param-
eterization. Note that using the random effect Ri introduces longitudinal dependence among Nits.
Specifically, in Model 2, the law of total covariance is derived as

cov
[
Nit1 ,Ni,t2

]
= cov

[
E

[
Nit1 | Ri

]
, E

[
Nit2 | Ri

]]
+ E

[
cov

[
Nit1 ,Nit2 | Ri

]]
= cov

[
Λi,t1 Ri,Λi,t2 Ri

]
+ 0

= Λit1Λit2 Var(Ri).
(5.4)

However, in Model 1, we have

cov
[
Nit1 ,Nit2

]
= 0. (5.5)
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An important implication in the comparison of the covariance in (5.4) under Model 2 and the co-
variance in (5.5) under Model 1 is that the random effect induces dependence among the observations.
Thus, the random effect not only explains the unobserved explanatory components but also introduces
dependence among observations. Hence, because the observations of the ith policyholder,

ni1, . . . , niτ

are not independent under Model 2, the corresponding likelihood function under Model 2 cannot
be written as the product of the likelihood function. Instead, we have the following log-likelihood
function for the observations:

`i (β, ψ) := log

∫ τ∏
t=1

fβ (nit | ri) gψ(ri)dri

 , (5.6)

which requires one-dimensional integration. Here, fβ(· | ri) is the probability mass function of the
Poisson distribution defined by

fβ (nit | ri) :=
exp (−Λitri) (Λitri)nit

nit!
,

and gψ is the probability density function of the random effect in (5.3). From a purely mathematical
perspective, the introduction of a random effect in Model 2 is for modeling dependence within the
observations. In this sense, the random-effect model is linked to the copula model (Frees and Valdez,
1998; Embrechts, 2009; Krupskii and Joe, 2013).

Next, for data in the form of (3.1), with z policyholders and each policyholder observed for τ
years, the log-likelihood function for Model 2 is written as

` (β, ψ) :=
z∑

i=1

`i (β, ψ) .

For the estimation of unknown coefficients β and parameter ψ, MLE is usually considered, and the
estimators of β and ψ are typically defined as(̂

β, ψ̂
)

:= arg maxβ,ψ ` (β, ψ) . (5.7)

5.2. Prediction in the GLMM

The goal of the a posteriori risk classification is to predict the net premium for each policyholder. In
Model 2, by definition, we have the following conditional expectation:

E
[
Ni,τ∗ | Ri

]
= RiΛi,τ∗ . (5.8)

Because the random effect for the ith policyholder, Ri, is an unknown random variable, the conditional
expectation in (5.8) cannot be used directly to predict the a posteriori rate in (3.2). However, in
combination with the prediction of a random effect,

E [Ri | ni1, . . . , niτ] , (5.9)
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the conditional expectation in (5.8) can calculate the a posteriori rate in (3.2) as follows:

E
[
Ni,τ∗ | ni1, . . . , niτ

]
= E

[
E

[
Ni,τ∗ | Ri, ni1, . . . , niτ

]
| ni1, . . . , niτ

]
= Λi,τ∗E [Ri | ni1, . . . , niτ] .

(5.10)

Hence, the prediction of the a posteriori rate in Model 2 is reduced to the estimation of predict-
ing the random effect in (5.9). Note that the prediction of the random effect in (5.9) allows for a
closed-form expression depending on the choice of distributional assumption for the random effect.
Otherwise, the random effect in (5.9) can be predicted numerically, either based on numerical integra-
tion or a Monte Carlo simulation. The next subsection explains a specific method for predicting the
random effect in (5.9).

5.3. Parametric assumptions for the random effect in the generalized linear mixed model

Model 3. Considering the settings in Model 2, we further assume that the parametric assumption for
Ri in (5.3) is

Ri ∼ gamma (1, ψ) .

In Model 3, the likelihood function in (5.6) can be analytically expressed as

`i (β, ψ) = log

∫ τ∏
t=1

exp (−rλit) (rλit)nit

nit!
1

Γ(1/ψ)ψ1/ψ

(
r1/ψ−1

)
exp (−r/ψ) dr


= log

 1
Γ(1/ψ)ψ1/ψ Γ

1/ψ +

τ∑
t=1

nit

1/ψ +

τ∑
t=1

λit

−
(
1/ψ+

τ∑
t=1

nit

)
τ∏

t=1

λnit
it

nit!

 ,
(5.11)

where λit denotes the realization of Λit in (4.1).
Hence, the statistical estimation procedure is based on the simple optimization of (5.11), which

does not require complicated numerical integration. Furthermore, since the gamma distribution is a
conjugate prior of the Poisson distribution, the posterior mean of the random effect in (5.9) can be
analytical obtained as follows:

E [Ri | ni1, . . . , niτ] =

1/ψ +
τ∑

t=1
nit

1/ψ +
τ∑

t=1
λit

(5.12)

from the fact that the conditional distribution Ri|ni1, . . . , niτ follows a gamma distribution with shape
and scale parameters given by

1/ψ +

τ∑
t=1

nit and
1

1/ψ +
τ∑

t=1
λit

,

respectively. In the conjugate families, the posterior mean of the individual’s random effect in (5.12)
can be represented by a weighted average between the prior mean of Ri (weighted by its precision)
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and the ratio of the total number of insurance claims across τ years for policyholder i to the sum of
the respective rate parameters, (

∑τ
t=1 nit)/(

∑τ
t=1 λit) (weighted by the sum of the rate parameters):

E [Ri | ni1, . . . , niτ] =

1/ψ +
τ∑

t=1
nit

1/ψ +
τ∑

t=1
λit

= (1)
1/ψ

1/ψ +
τ∑

t=1
λit

+


τ∑

t=1
nit

τ∑
t=1
λit


τ∑

t=1
λit

1/ψ +
τ∑

t=1
λit

.

Because E [Ri|ni1, . . . , niτ] later acts as a multiplier of the expectation from the fixed effects alone (see
the example at the end of Section 5, under Model 3), E [Ri|ni1, . . . , niτ] = 1 suggests no modification
in the premium. Additionally, the ratio (

∑τ
t=1 nit)/(

∑τ
t=1 λit) indicates how the observed number of

claims relates to the expected number of claims over time for policyholder i. For example, if
∑τ

t=1 nit >∑τ
t=1 λit, then this would lead to a ratio greater than one, resulting in E [Ri|ni1, . . . , niτ] > 1.

So far, we have analyzed the properties of GLMMs in Model 2, in which the random effect Ri

is assumed to follow a gamma distribution. This distributional assumption is convenient because it
provides an analytical expression for the likelihood function in (5.11) and the analytical conditional
distribution of Ri. However, inherited from the linear mixed model, in which both the response and
random variables are assumed to follow a normal distribution, the more popular choice of distribu-
tional assumption for Ri is lognormal distribution. The following model provides a GLMM model
with lognormal assumption for Ri.

Model 4. We now consider the settings in Model 2 and we further assume that the parametric as-
sumption for Ri is

Ri ∼ lognormal (0, ψ) .

We have

E [Ri] = exp(ψ/2) and Var Ri =
(
exp(ψ) − 1

)
exp(ψ)

under the parameterization in Model 4. Unlike the gamma distributional assumption for the random
effect as in Model 3, the lognormal distributional assumption for the random effect does not lead to
a closed-form expression for the likelihood function in (5.6). Hence, for the statistical estimation
procedure in (5.7), numerical integration is required in (5.6). Standard numerical integration meth-
ods, such as the Laplace approximation (Laplace, 1986) and Gaussian quadrature (Golub and Welsch,
1969), can efficiently approximate the likelihood function for GLMMs. We explain that the a posteri-
ori rate in (5.10) can be approximated as an affine function of observations in Section 6.1. In the next
subsection the use of statistical programming for GLMMs is explained.

5.4. Data example

To fit the GLMMs in Model 2, we consider the hglm function in the hglm package (Rönnegård et al.,
2010) in R. The function is for fitting HGLMs via extended quasi-likelihood (Lee et al., 2006), which
extends GLMs by relaxing the assumption that error components are independent. Its grammatical
form is as follows:
> hglm(formula, family=familytype(link=linkfunction),

random=var, rand.family=familytype(link=linkfunction),
data=dataset,. . .).
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Table 4: Estimation results for the parameters under Model 3 and Model 4

Parameter Model 3 Model 4
Est Std.dev z p-value Est Std.dev z p-value

Fixed effect
(Intercept) β̂0 −2.356 0.319 −7.373 <0.0001 * −2.849 0.364 −7.829 <0.0001 *

Type = City β̂1 1.048 0.370 2.833 0.0047 * 1.323 0.417 3.177 0.0015 *
Type = County β̂2 1.940 0.379 5.121 <0.0001 * 2.229 0.422 5.284 <0.0001 *
Type = School β̂3 0.920 0.333 2.766 0.0057 * 0.917 0.379 2.418 0.0157 *
Type = Town β̂4 −0.909 0.390 −2.331 0.0199 * −0.713 0.442 −1.612 0.1072

Type = Village β̂5 0.434 0.349 1.245 0.2131 0.613 0.396 1.549 0.1216
avgCoverage β̂6 0.383 0.048 8.038 <0.0001 * 0.337 0.040 8.430 <0.0001 *

Random effect ψ 1.072 1.191

Table 5: Selected estimation results for random effects under Models 3 and Model 4

Model 3 Model 4
Estimate Std.err Estimate Std.err

R1 0.938 0.299 0.234 0.304
R2 0.647 0.247 0.004 0.238
R3 2.074 0.280 0.995 0.295
R4 0.875 0.238 0.262 0.238
R5 1.180 0.276 0.467 0.285
R6 0.921 0.314 0.302 0.313
R7 3.132 0.181 1.584 0.177
R8 0.336 0.345 −0.451 0.286
R9 0.960 0.229 0.438 0.212
R10 0.264 0.360 −0.906 0.341

This is similar to the glm function in R but with additional terms for the random effect: random and
rand.family. First, we specify the policyholder-specific random effect of interest as random=∼1|Polic
yNum. To easily specify the distribution of the random effect, we consider the conditional expectation
of frequency as

E
[
Nit | γi

]
= η−1 (Xitβ + γi) = exp (Xitβ + γi) ,

and having a log link function. To use the gamma distribution for the random effect in the function,
the random effect γi is given by γi = log(Ri) and Ri ∼ gamma(1, ψ). Thus, we need a log link function
to specify the distribution for the random effect as rand.family=gamma(link=log). Similarly, for the
log-normal distribution, we can use the code rand.family=gaussian(link=identity), which implies
that γi ∼ N(0, ψ); that is, Ri ∼ lognormal(0, ψ). The specific form of the function under the setting of
Model 3 is
> hglm(Frequency∼TypeCity+· · · +avgCoverage,

family=poisson(link=log),

random=∼1|PolicyNum,

rand.family=gamma(link=log),

data=mydata).

Under the settings in Model 4,
> hglm(Frequency∼TypeCity+· · · +avgCoverage,

family=poisson(link=log),

random=∼1|PolicyNum,

rand.family=gaussian(link=identity),
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data=mydata).

Alternative functions to fit GLMM are the glmer function of the lme4 package and the glmmPQL
function of the MASS package. The glmer function is commonly used, and it fits the model via
maximum likelihood. Meanwhile, glmmPQL uses the penalized quasi-likelihood approach to evaluate
the likelihood of GLMM. The functions in Model 4 are
> glmer(Frequency∼TypeCity+ · · · +avgCoverage+(1|PolicyNum),

family=poisson(link=log),

data=mydata),

and

> glmmPQL(Frequency∼TypeCity+· · · +avgCoverage,

family=poisson(link=log),

random=∼1|PolicyNum,

data=mydata).

The estimation results of these models for the parameters are summarized in Table 4. The esti-
mates for the fixed effects differ slightly depending on the distribution of the random effect; however,
we have the same interpretation for the tendency in risk characteristics. In this example, the function
provides an estimate of the dispersion parameters for the random effect. Because the dispersion pa-
rameter of the gamma distribution is the reciprocal of the shape parameter and has a mean of 1, ψ is
implied. Furthermore, using the code print(summary(res), print.ranef = TRUE), we obtain esti-
mates of random effects for all policyholders. Table 5 lists the estimates for selected policyholders in
Models 3 and 4. This function provides a different form of estimates depending on the link function of
the random effect. From the estimation results in Tables 4 and 5, we obtain the estimated conditional
expectation as follows:

Ê [Niτ∗ | ni1, . . . , niτ] = exp
(
Xiτ∗ β̂ + γ̂i

)
.

Here, γ̂i changes over time, based on historical observations, whereas the corresponding expectation
of GLMs in (4.3) remains invariant with respect to time and historical observations. For example,
the third policyholder in the dataset is in a county and has an average coverage of 2.495; thus, under
Model 3, the estimated conditional expectation is

exp
(
β̂0 + β̂2 + 0.38256 β̂6

)
· R̂3 = exp (−2.356 + 1.940 + 0.383 × 2.495) × 2.074

= 3.555,

and under Model 4, it is

exp
(
β̂0 + β̂2 + 0.38256 β̂6 + γ̂3

)
= exp (−2.849 + 2.229 + 0.337 × 2.495 + 0.995)

= 3.375.

6. Bühlmann method and GLMM

Although GLMMs offer a unified approach for calculating the a posteriori insurance rate, they often
lack closed-form expressions, except for a few distributional assumptions; for instance, see Model
3. In this section, we demonstrate the incorporation of the credibility theory into the framework of
GLMMs by providing a closed-form approximation of the a posteriori rate.



Predictive analysis in insurance: GLMM 449

For simplicity, we consider the settings in Model 2 with the further assumption that the risk char-
acteristics are the same across years; that is, Xi1 = · · · = Xiτ∗ . While one of the main interests of
insurance is the prediction of the net premium of each policyholder defined in (5.8) using the a pos-
teriori rate defined in (3.2), the closed form of the a posteriori rate defined in (3.2) is generally not
possible. Alternatively, we may consider approximating the a posteriori rate for the ith policyholder
defined in (3.2) as the affine function of the historical observations, by the following:

PremB := α̂0 + α̂1Ni1 + · · · + α̂τNiτ, (6.1)

where (
α̂0, . . . , α̂τ

)
:= arg min(α0,...,ατ)∈Rτ E

[
(E [Niτ∗ | Ri] − (α0 + α1Ni1 + · · · + ατNiτ))2

]
.

Following the classical procedure in the Bühlmann premium (Bühlmann and Gisler, 2006), the
optimal premium for the ith policyholder in (6.1) is obtained as

α̂0 = (1 − Zτ)E [Niτ∗ ] and α̂1 = · · · = α̂τ =
Zτ
τ
,

where Zτ, the Bühlmann factor, is given by

Zτ =
τVar (E [Niτ∗ | Ri])

E [Var (Niτ∗ | Ri)] + τVar (E [Niτ∗ | Ri])
.

Furthermore, E [Niτ∗ ], E [Var (Niτ∗ |Ri)], and Var (E [Niτ∗ |Ri]) can be obtained as
E [Niτ∗ ] := Λi,

E [Var (Niτ∗ | Ri)] := Λi,

Var (E [Niτ∗ | Ri]) := (Λi)2 ψ

from equations 
E [Niτ∗ ] := E [u (Ri)] ;

E [Var (Niτ∗ | Ri)] := E [v (Ri)] ;

Var (E [Niτ∗ | Ri]) := Var (u (Ri)) ,

where

u (Ri) := E [Niτ∗ | Ri] = RiΛi and v (Ri) := Var (Niτ∗ | Ri) = RiΛi.

7. Discussion and conclusion

In this study, we present an intuitive explanation of the structure of GLMs and GLMMs and their rela-
tionship with insurance pricing methods; and we explain their connection with the Bühlmann method
in insurance. With recent advances in computing tools, such as deep neural networks, insurance
pricing can become more accurate through the use of complex predictive expressions. However, the
traditional credibility method, which seeks an intuitive representation of insurance prices, seems at
odds with modern statistical techniques. An interesting future topic is to explore how to adapt modern
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statistical computing tools to the credibility method in order to improve accuracy while preserving its
intuitive and simple form.

Here, we mainly focus on the Poisson distribution in GLM and GLMMs to model the frequency
of insurance claims, which are commonly used for count data. However, based on the assumption
that the variance and mean are the same in the distribution, there are limitations, such as incorrect
inference when overdispersion is present in the dataset. To address overdispersion in the Poisson
model, overdispersion adjustments can be made using the quasi-likelihood method (quasi-Poisson
model) or an alternative distribution method, such as negative binomial distribution. We note that,
with some limitation (Lee et al., 2020), the problem of overdispersion can be reduced for Poisson
distribution by using the GLMM framework.
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