• Title/Summary/Keyword: Mixed finite element method

Search Result 218, Processing Time 0.028 seconds

A NONCONFORMING PRIMAL MIXED FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS

  • Cho, Sungmin;Park, Eun-Jae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1655-1668
    • /
    • 2014
  • In this article, we propose and analyze a new nonconforming primal mixed finite element method for the stationary Stokes equations. The approximation is based on the pseudostress-velocity formulation. The incompressibility condition is used to eliminate the pressure variable in terms of trace-free pseudostress. The pressure is then computed from a simple post-processing technique. Unique solvability and optimal convergence are proved. Numerical examples are given to illustrate the performance of the method.

OPTIMAL L2-ERROR ESTIMATES FOR EXPANDED MIXED FINITE ELEMENT METHODS OF SEMILINEAR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.545-565
    • /
    • 2014
  • In this paper we derive a priori $L^{\infty}(L^2)$ error estimates for expanded mixed finite element formulations of semilinear Sobolev equations. This formulation expands the standard mixed formulation in the sense that three variables, the scalar unknown, the gradient and the flux are explicitly treated. Based on this method we construct finite element semidiscrete approximations and fully discrete approximations of the semilinear Sobolev equations. We prove the existence of semidiscrete approximations of u, $-{\nabla}u$ and $-{\nabla}u-{\nabla}u_t$ and obtain the optimal order error estimates in the $L^{\infty}(L^2)$ norm. And also we construct the fully discrete approximations and analyze the optimal convergence of the approximations in ${\ell}^{\infty}(L^2)$ norm. Finally we also provide the computational results.

A MIXED FINITE ELEMENT METHOD FOR NAVIER-STOKES EQUATIONS

  • Elakkad, Abdeslam;Elkhalfi, Ahmed;Guessous, Najib
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1331-1345
    • /
    • 2010
  • This paper describes a numerical solution of Navier-Stokes equations. It includes algorithms for discretization by finite element methods and a posteriori error estimation of the computed solutions. In order to evaluate the performance of the method, the numerical results are compared with some previously published works or with others coming from commercial code like ADINA system.

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

HIERARCHICAL ERROR ESTIMATORS FOR LOWEST-ORDER MIXED FINITE ELEMENT METHODS

  • Kim, Kwang-Yeon
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.429-441
    • /
    • 2014
  • In this work we study two a posteriori error estimators of hierarchical type for lowest-order mixed finite element methods. One estimator is computed by solving a global defect problem based on the splitting of the lowest-order Brezzi-Douglas-Marini space, and the other estimator is locally computable by applying the standard localization to the first estimator. We establish the reliability and efficiency of both estimators by comparing them with the standard residual estimator. In addition, it is shown that the error estimator based on the global defect problem is asymptotically exact under suitable conditions.

POSTPROCESSING FOR THE RAVIART-THOMAS MIXED FINITE ELEMENT APPROXIMATION OF THE EIGENVALUE PROBLEM

  • Kim, Kwang-Yeon
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.467-481
    • /
    • 2018
  • In this paper we present a postprocessing scheme for the Raviart-Thomas mixed finite element approximation of the second order elliptic eigenvalue problem. This scheme is carried out by solving a primal source problem on a higher order space, and thereby can improve the convergence rate of the eigenfunction and eigenvalue approximations. It is also used to compute a posteriori error estimates which are asymptotically exact for the $L^2$ errors of the eigenfunctions. Some numerical results are provided to confirm the theoretical results.

Vibration Analysis of 3-Dimensional Structure by using Mixed Method of Finite Element-Transfer Matrix (유한요소-전달행렬의 혼합물을 이용한 3차원 구조물의 진동해석)

  • 이동명
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • In this study for reduction degree of freedom of dynamic model, a mixed method to combined finite element method and transfer matrix method is presented. This offers the advantages of an automatic reduction in the size of the eigenvalues problem and of a straightforward means of dynamic substructuring. The analytical procedure in this method for dynamic analysis of 3-dimensional cantilevered box beam are described. the result of numerical example is shown to demonstate the efficiency and accuracy of this method. The result form this example agree well those obtained by ANSYS, By using this technique, the number of nodes required in the regular finite element method is reduced and therefore a smaller com-puter can be used.

  • PDF

Dynamic analysis of helicoidal bars with non-circular cross-sections via mixed FEM

  • Eratli, Nihal;Yilmaz, Murat;Darilmaz, Kutlu;Omurtag, Mehmet H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.221-238
    • /
    • 2016
  • One of the objectives of this study is to implement the direct calculation of the torsional moment of inertia for non-circular cross-sections, which is based on the St. Venant torsion formulation and the finite element method. Recently the proposed method provides a unique calculation of the torsional rigidity of simply and multiply connected cross-sections. Next, free vibration analyses of cylindrical and non-cylindrical helices with non-circular cross-sections are solved by a curved two-nodded mixed finite element based on the Timoshenko beam theory. Some thin-thick closed or open sections are handled and the natural frequencies of cylindrical and non-cylindrical helices are compared with the literature and the commercial finite element program SAP2000.

Analysis of RC walls with a mixed formulation frame finite element

  • Saritas, Afsin;Filippou, Filip C.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.519-536
    • /
    • 2013
  • This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic damage model is implemented to describe the hysteretic behavior of concrete. Comparisons with available experimental data on RC structural walls confirm the accuracy of proposed method.

RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF MIXED FINITE ELEMENT METHODS FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS

  • Chen, Yanping;Huang, Yunqing;Hou, Tianliang
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.549-569
    • /
    • 2012
  • In this paper asymptotic error expansions for mixed finite element approximations to a class of second order elliptic optimal control problems are derived under rectangular meshes, and the Richardson extrapolation of two different schemes and interpolation defect correction can be applied to increase the accuracy of the approximations. As a by-product, we illustrate that all the approximations of higher accuracy can be used to form a class of a posteriori error estimators of the mixed finite element method for optimal control problems.