Browse > Article
http://dx.doi.org/10.12989/cac.2013.12.4.519

Analysis of RC walls with a mixed formulation frame finite element  

Saritas, Afsin (Department of Civil Engineering, Middle East Technical University)
Filippou, Filip C. (Department of Civil and Environmental Engineering, University of California)
Publication Information
Computers and Concrete / v.12, no.4, 2013 , pp. 519-536 More about this Journal
Abstract
This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic damage model is implemented to describe the hysteretic behavior of concrete. Comparisons with available experimental data on RC structural walls confirm the accuracy of proposed method.
Keywords
shear behavior; finite element method; mixed formulation; frame finite element; shear walls;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 ACI Committee 318 (1989), Building Code Requirements for Reinforced Concrete (ACI 318-89), Detroit, American Concrete Institute.
2 Bazant, Z.P. and Prat, P.C.(1988), "Microplane model for brittle-plastic material .1. Theory", J. Eng. Mech. ASCE, 114(10), 1672-1687.   DOI   ScienceOn
3 CEB (1991), CEB-FIP model code 1990 - final draft. Lausanne, CEB.
4 Ceresa, P., Petrini, L., Pinho, R. and Sousa, R. (2009), "A fibre flexure-shear model for seismic analysis of RC-framed structures", Earthq. Struct. Dyn., 38(5), 565-586.   DOI   ScienceOn
5 Feenstra, P.H. and De Borst, R. (1996), "A Composite plasticity model for concrete", Int. J. Solids Struct., 33(5), 707-730.   DOI   ScienceOn
6 Filippou, F.C. and Saritas, A. (2006), "A beam fnite element for shear-critical RC beams", ACI Spec. Publication., 37, 295-310.
7 Friedman, Z. and Kosmatka, J.B. (1993), "An improved 2-Node timoshenko beam finite-element", Comput. Struct., 47(3), 473-481.   DOI   ScienceOn
8 Ghobarah, A. and Youssef, M. (1999), "Modelling of reinforced concrete structural walls", Eng. Struct., 21(10), 912-923.   DOI   ScienceOn
9 Kazak, I. (2011), "Finite element analysis of shear-critical reinforced concrete walls", Comput. Concr., 8(2).
10 Kotronis, P. and Mazars, J. (2005), "Simplified modelling strategies to simulate the dynamic behaviour of R/C walls", J. Earthq. Eng., 9(2), 285-306.
11 La Borderie, C.L. (1991), Phenomenes unilateraux dans un materiau endommageable: modelisation etapplication a l'analyse des structures en beton, Universite Paris.
12 Lee, H.S., Jeong, D.H. and Hwang, K.R. (2012), "Analytical simulation of reversed cyclic lateral behaviors of an RC shear wall sub-assemblage", Comput. Concr., 10(2).
13 Lee, J. and Fenves, G.L. (1998), "Plastic-damage Model for Cyclic Loading of Concrete Structures", J. Eng. Mech. -ASCE, 124(8), 892-900.   DOI   ScienceOn
14 Lefas, I.D., Kotsovos, M.D. and Ambraseys, N.N. (1990), "Behavior of reinforced-concrete structural walls - strength, Deformation Characteristics, and Failure Mechanism", ACI Struct. J., 87(1), 23-31.
15 Martinelli, L. (2008), "Modeling of shear-flexure interaction in reinforced concrete elements subjected to cyclic lateral loading", ACI Struct. J., 105(6), 675-684.
16 Mazars, J. (1986), "A description of microscale and macroscale damage of concrete structures", Eng. Fract. Mech., 25(5-6), 729-737.   DOI   ScienceOn
17 Nakamura, H. and Higai, T. (2001), Compressive Fracture Energy and Fracture Zone Length of Concrete. Modeling of Inelastic Behavior of RC Structures under Seismic Loads. P.B. Shing and T. Tanabe, ASCE: 471-487.
18 Navarro Gregori, J., Miguel Sosa, P., Fernandez Prada, M.A. and Filippou, F.C. (2007), "A 3d numerical model for reinforced and prestressed concrete elements subjected to axial, bending, shear and torsional loading", Eng. Struct., 29(12), 3404-3419.   DOI   ScienceOn
19 Oller, S., Onate, E., Oliver, J. and Lubliner, J. (1990), "Finite element nonlinear analysis of concrete structures using a "plastic damage model", Eng. Fract. Mech., 35(1/2/3), 219-231.   DOI   ScienceOn
20 Omidi, O. and Lotfi, V. (2010), "Numerical Analysis of Cyclically Loaded Concrete Under Large Tensile Strains by the Plastic-Damage Model" SCIENTIA IRANICA TRANSACTION A-CIVIL ENGINEERING, 17(3), 194-208.
21 Orakcal, K. and Wallace, J.W. (2004), Modeling of Slender Reinforced Concrete Walls, Proceeding of the 13th World Conference on Earthquake Engineering, Vancouver.
22 Saritas, A. (2006), Mixed Formulation Frame Element for Shear Critical Steel and Reinforced Concrete Members, Ph.D. Dissertation, University of California, Berkeley.
23 Petrangeli, M. (1999), "Fiber element for cyclic bending and shear of RC structures. II: Verification", J. Struct. Eng. ASCE, 125(9), 1002-1009.
24 Petrangeli, M., Pinto, P.E. and Ciampi, V. (1999), "Fiber element for cyclic bending and shear of RC structures. I: Theory", J. Struct. Eng. ASCE, 125(9), 994-1001.
25 Rericha, P. (1991), "Layer Model of Bending-Shear Failure in Rc Plates and Beams", J. Struct. Eng. ASCE, 117(10), 2865-2883.   DOI
26 Saritas, A. and Filippou, F.C. (2009a), "Inelastic axial-flexure-shear coupling in a mixed formulation beam finite element", Int. J. Non-Linear Mech., 44(8), 913-922.   DOI   ScienceOn
27 Saritas, A. and Filippou, F.C. (2009b), "Numerical integration of a class of 3d plastic-damage concrete models and condensation of 3d stress-strain relations for use in beam finite elements", Eng. Struct., 31(10), 2327-2336.   DOI   ScienceOn
28 Saritas, A. and Soydas, O. (2012), "Variational base and solution strategies for nonlinear force-based beam finite elements", Int. J. Non-Linear Mech., 47, 54-64   DOI   ScienceOn
29 Spacone, E., Filippou, F.C. and Taucer, F.F. (1996), "Fiber beam-column model for nonlinear analysis of RC rrames: I: Formulation", Earthq. Eng. Struct. Dyn., 25(7), 711-725.   DOI   ScienceOn
30 Taylor, R.L., Filippou, F.C., Saritas, A. and Auricchio, F. (2003), "Mixed finite element method for beam and frame problems", Comput. Mech., 31(1-2), 192-203.   DOI   ScienceOn
31 Thomsen, J.H. and Wallace, J.W. (2004), "Displacement-based design of slender reinforced concrete structural walls-experimental verification", J. Struct. Eng.-ASCE, 130(4), 618-630.   DOI   ScienceOn
32 Vulcano, A. and Bertero, V.V. (1987), Analytical Models for Predicting The Lateral Response of R.C. Shear Walls: Evaluation of Their Reliability, UCB/EERC-87/19.
33 Valipour, H.R. and Foster, M.P. (2010), "A reinforced concrete frame element with shear effect", Struct. Eng. Mech., 36(1), 57-78.   DOI   ScienceOn
34 Vecchio, F.J. and Collins, M.P. (1986), "The modified compression field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(2), 219-231.
35 Vecchio, F.J. and Shim, W. (2004), "Experimental and analytical reexamination of classic concrete beam tests", J. Struct. Eng.-ASCE, 130(3), 460-469.   DOI   ScienceOn