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RICHARDSON EXTRAPOLATION AND DEFECT

CORRECTION OF MIXED FINITE ELEMENT METHODS

FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS

Yanping Chen, Yunqing Huang, and Tianliang Hou

Abstract. In this paper asymptotic error expansions for mixed finite
element approximations to a class of second order elliptic optimal control
problems are derived under rectangular meshes, and the Richardson ex-

trapolation of two different schemes and interpolation defect correction
can be applied to increase the accuracy of the approximations. As a by-
product, we illustrate that all the approximations of higher accuracy can
be used to form a class of a posteriori error estimators of the mixed finite

element method for optimal control problems.

1. Introduction

The aim of this paper is to discuss the asymptotic behavior of the mixed
finite element approximation for a elliptic optimal control problem described
as follows:

min
u∈K⊂U

{
1

2
∥ y − yd ∥2W +

1

2
∥ u ∥2U

}
(1)

subject to the state equation

−div(A∇y) + cy = f +Bu, x ∈ Ω(2)

with the boundary condition

A∇y · n = 0, x ∈ ∂Ω,(3)

where Ω ⊂ R2 is a bounded and convex open set with the Lipschitz boundary
∂Ω, n indicates the outward unit normal vector along ∂Ω, L2(Ω) stands for
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the usual L2-inner product space, K is a nonempty closed convex set in L2(Ω),
f , yd ∈ L2(Ω), B is a continuous linear operator from U = L2(Ω) to L2(Ω),
W = L2(Ω). c(x) ∈ L∞(Ω) and there exists a constant c∗ > 0 such that
c(x) ≥ c∗, ∀ x ∈ Ω. The coefficient matrix A ∈ L∞(Ω;R2×2) is a symmetric
and uniformly elliptic, i.e., A(x) is a symmetric and positive definite 2 × 2-
matrix and there exists a constant c⋆ > 0 satisfying for any vector X ∈ R2,
XTA(x)X ≥ c⋆∥X∥2 for almost all x ∈ Ω.

Optimal control problems [27] have been extensively utilized in many aspects
of the modern life such as social, economic, scientific and engineering numer-
ical simulation. Due to the wide applications of these problems, they must
be solved successfully with efficient numerical methods. Among these numer-
ical methods, finite element method is a valid numerical method of studying
the partial differential equation, but it is not deeply studied in solving op-
timal control problems. There have been many studies on this aspect, see
[33, 19, 20, 30, 12, 3, 16, 28, 1, 2]. A systematic introduction of finite el-
ement method for PDEs and optimal control can be found in, for example,
[32, 31, 17]. In the recent years, we utilized the mixed finite element method to
solve the optimal control problems. In [7, 8, 9], we obtained the error estimates
and superconvergence of mixed finite element methods for elliptic optimal con-
trol problems. In [10], we derived a posteriori error estimates of mixed finite
element methods for elliptic optimal control problems. We also investigated
the parabolic optimal control problems by mixed finite element methods, see
[36, 11]. Very recently, in [29], in order to increase the accuracy of finite ele-
ment approximations for optimal control problems, they studied two numerical
approaches of higher accuracy, namely, the Richardson extrapolation schemes
and an interpolation defect correction method.

It is well known that the extrapolation method, which was established by
Richardson in 1926, is an efficient procedure for increasing the accuracy of
approximation of many problems in numerical analysis. The effectiveness of
this technique relies heavily on the existence of an asymptotic expansion for the
error. This technique has been well demonstrated in its applications to the finite
element and the mixed finite element methods for elliptic partial differential
equations [4, 6, 22, 34, 35], parabolic partial differential equations [18], integral
and integro-differential equations [22, 24, 25, 26, 38], and to the boundary
element methods and collocation methods in [37] and [21], respectively. The
defect correction (Galerkin and Petrov-Galerkin) finite element by means of an
interpolation postprocessing technique is another numerical method to obtain
approximations of higher accuracy, which has been proved for a wide variety
of models, see, for example, [22, 23, 5], and the references cited therein.

Our objective in this paper is to present an analysis for the Richardson
extrapolation method of two different forms and an interpolation defect cor-
rection method for the mixed finite element approximations in the L2-norm.
Firstly, we derive the asymptotic expansion of the error in the mixed finite
element solution, by the asymptotic expansion the Richardson extrapolation
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of two different types and the interpolation defect correction can be applied to
generate mixed finite element approximations of higher accuracy. In addition,
by means of these approximations with higher accuracy, a class of a posteriori
estimators are constructed for this mixed finite element method.

The paper is organized as follows: In Section 2, the approximation subspace
and the variational formula of (1)-(3). Also, the asymptotic expansion for
the Raviart-Thomas projection is presented for the future need. In Section 3,
we investigate the asymptotic expansion of the error between the mixed finite
element solution and the Raviart-Thomas projection of the exact solution to
the model problem in the L2-norm. Section 4 deals with an interpolation defect
correction approximation in the L2-norm based on the results given in Section
3. Furthermore, at each end of Sections 3 and 4, a posteriori error estimators are
furnished as by-products of these numerical solutions with higher convergence
rates. In the last section, we briefly give conclusions and some possible future
work.

We adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω with a
norm ∥ · ∥m,p given by ∥ v ∥pm,p=

∑
|α|≤m ∥ Dαv ∥pLp(Ω), a semi-norm | · |m,p

given by | v |pm,p=
∑

|α|=m ∥ Dαv ∥pLp(Ω) . We set Wm,p
0 (Ω) = {v ∈ Wm,p(Ω) :

v |∂Ω= 0}. For p=2, we denote Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω), and
∥ · ∥m=∥ · ∥m,2, ∥ · ∥=∥ · ∥0,2 . In addition C or c denotes a general positive
constant independent of h.

2. The asymptotic expansion

In this section we give the weak variational formula and the mixed finite
element method for the elliptic optimal control problem (1)-(3). For the sake
of simplicity of analysis, we take the domain Ω to be a rectangle and B = I in
this paper.

Next, we introduce the co-state elliptic equation

−div(A∇z) + cz = y − yd, x ∈ Ω(4)

with the boundary condition

A∇z · n = 0, x ∈ ∂Ω.(5)

Let

VVV = H(div; Ω) = {vvv ∈ (L2(Ω))2, divvvv ∈ L2(Ω)}

equipped with the following norm given by

∥ vvv ∥V=∥ vvv ∥H(div;Ω)= (∥ vvv ∥20,Ω + ∥ divvvv ∥20,Ω)1/2.

In addition, set

V0 = {v ∈ V : v · n = 0, x ∈ ∂Ω}.
To consider the mixed finite element approximation of our convex optimal

control problems, we need a weak form of the optimal control problem (1)-(3).
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We recast (1)-(3) in the following weak form: (CCP) find (ppp, y, u) ∈ VVV 0×W×U
such that

min
u∈K⊂U

{
1

2
∥ y − yd ∥2W +

1

2
∥ u ∥2U

}
,(6)

a(ppp,vvv)− (y, divvvv) = 0, ∀ vvv ∈ VVV 0,(7)

(divppp, w) + (cy, w) = (f + u,w), ∀ w ∈W,(8)

where (·, ·) denotes the stands L2(Ω) inner product, and a(·, ·) is a bilinear form
defined by

a(ppp,v) =

∫
Ω

A−1ppp · vdΩ.

It is well known (see, e.g., [27]) that the optimal control problem (6)-(8) has a
unique one solution (ppp, y, u), and that a triplet (ppp, y, u) is the solution of (6)-(8)
if and only if there is a co-state (qqq, z) ∈ VVV 0×W such that (ppp, y, qqq, z, u) satisfies
the following optimality conditions: (CCP-OPT)

a(ppp,vvv)− (y, divvvv) = 0, ∀ vvv ∈ VVV 0,(9)

(divppp, w) + (cy, w) = (f + u,w), ∀ w ∈W,(10)

a(qqq,vvv)− (z, divvvv) = 0, ∀ vvv ∈ VVV 0,(11)

(divqqq, w) + (cz, w) = (y − yd, w), ∀ w ∈W,(12)

(u+ z, ũ− u)U ≥ 0, ∀ ũ ∈ K.(13)

In this paper, we only consider the unconstrained case, that is, K = U =
L2(Ω), which is the special simple case. Thus, it is easy to deduce from (13)
that u = −z. Then (9)-(13) can be rewritten into

a(ppp,vvv)− (y, divvvv) = 0, ∀ vvv ∈ VVV 0,(14)

(divppp, w) + (cy, w) + (z, w) = (f, w), ∀ w ∈W,(15)

a(qqq,vvv)− (z, divvvv) = 0, ∀ vvv ∈ VVV 0,(16)

(divqqq, w) + (cz, w)− (y, w) = (−yd, w), ∀ w ∈W,(17)

which is the mixed weak form of the following problem:

−div(A∇y) + cy + z = f, x ∈ Ω,

A∇y · n = 0, x ∈ ∂Ω,

−div(A∇z) + cz − y = −yd, x ∈ Ω,

A∇z · n = 0, x ∈ ∂Ω.

Now, let us consider the mixed finite element approximation to (14)-(17).
Let Th1,h2 to be a finite element partition of Ω into uniform triangles and
VVV h1,h2 ×Wh1,h2 ⊂ VVV ×W denote a pair of finite element spaces satisfying the
Babuška-Brezzi condition, where h1 and h2 are the mesh sizes in the x- and y-
axis, respectively. Even if there are now several choices for VVV h1,h2 and Wh1,h2 ,
here we will consider only the Raviart-Thomas space of the lowest order; i.e.,

VVV h1,h2 := {vvvh1,h2 ∈ VVV : vvvh1,h2 |e ∈ Q1,0(e)×Q0,1(e), e ∈ Th1,h2},(18)
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Wh1,h2 := {wh1,h2 ∈W : wh1,h2 |e ∈ Q0,0(e), e ∈ Th1,h2},(19)

where Qm,n(e) indicates the space of polynomials of degree no more than m
and n in x and y on e, respectively. The extension to other stable rectangular
element spaces can also be made. Moreover, we let

VVV 0,h1,h2 = VVV h1,h2 ∩ VVV 0.

Then the corresponding mixed finite element discretization of (14)-(17) is as
follows: compute (yh1,h2 , ppph1,h2 , zh1,h2 , qqqh1,h2) ∈ (Wh1,h2 × VVV 0,h1,h2)

2 ⊂ (W ×
VVV 0)

2 such that

a(ppph1,h2 , vvv)− (yh1,h2 , divvvv) = 0, ∀ vvv ∈ VVV 0,h1,h2 ,(20)

(divppph1,h2
, w) + (cyh1,h2 , w) + (zh1,h2 , w) = (f, w), ∀ w ∈Wh1,h2 ,(21)

a(qqqh1,h2 , vvv)− (zh1,h2 , divvvv) = 0, ∀ vvv ∈ VVV 0,h1,h2 ,(22)

(divqqqh1,h2 , w) + (czh1,h2 , w)− (yh1,h2 , w) = (−yd, w), ∀ w ∈Wh1,h2 .(23)

Let us recall the Raviart-Thomas projection

Π0
h1,h2

× P 0
h1,h2

: VVV ×W → VVV 0,h1,h2 ×Wh1,h2

is defined by the following conditions:∫
si

(u−Π0
h1,h2

u) · nds = 0, i = 1, 2, 3, 4,(24) ∫
e

(p− P 0
h1,h2

p) = 0,(25)

where si(i = 1, 2, 3, 4) are the four edges of the rectangle e ∈ Th1,h2 and n
is the outward normal direction on the si. This projection has the following
projections [13]:

(i) P 0
h1,h2

is the local L2(Ω) projection;

(ii) Π0
h1,h2

and P 0
h1,h2

satisfy

(div(u−Π0
h1,h2

u), wh1,h2) = 0, ∀ wh1,h2 ∈Wh1,h2 ,(26)

(divvvvh1,h2 , p− P 0
h1,h2

p) = 0, ∀ vvvh1,h2 ∈ VVV h1,h2 ;(27)

(iii) there holds the approximation properties,

∥u−Π0
h1,h2

u∥0 ≤ Ch∥u∥1,(28)

∥div(u−Π0
h1,h2

u)∥−s ≤ Ch1+s∥divu∥1, 0 ≤ s ≤ 1,(29)

∥p− P 0
h1,h2

p∥−s ≤ Ch1+s∥p∥1, 0 ≤ s ≤ 1,(30)

where h := max{h1, h2}.
Also, from [15], we recall the following two lemmas to conclude the section.

Lemma 2.1. Assume that u ∈ VVV ∩ (H4(Ω))2 and αij ∈ H4(Ω) (1 ≤ i, j ≤ 2).
Then we have

(α · (u−Π0
h1,h2

u), vvv) =− h21
3

∫
Ω

[α11(u1)xx + α12(u2)xx]v1dΩ
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+
h21
3

∫
Ω

[(α22)x(u2)x − α21(u1)xx]v2dΩ

+
h22
3

∫
Ω

[(α11)y(u1)y − α12(u2)yy]v1dΩ

− h22
3

∫
Ω

[α22(u2)yy + α21(u1)yy]v2dΩ

+O(h4)∥u∥4∥vvv∥0, vvv ∈ VVV 0,h1,h2 ,

where u1, u2 and v1, v2 are the first components and the second components
of the vector-valued functions u and vvv, respectively, and α = (αij)2×2 is the
inverse of the matrix A : α = A−1.

Lemma 2.2. Assume that p, c ∈ H3(Ω). Then we have the asymptotic expan-
sion:

(c(p− P 0
h1,h2

p), w) =
h21
3

∫
Ω

cxpxwdΩ+
h22
3

∫
Ω

cypywdΩ

+O(h4)∥p∥3∥w∥0, w ∈Wh1,h2 .

From Lemmas 2.1 and 2.2 we immediately obtain:

Corollary 2.3. Assume that u ∈ VVV ∩(H2(Ω))2 and αij ∈ H2(Ω)(1 ≤ i, j ≤ 2).
Then we have

|(α · (u−Π0
h1,h2

u), vvv)| ≤ Ch2∥u∥2∥vvv∥0, vvv ∈ VVV 0,h1,h2 .

Corollary 2.4. Assume that p, c ∈ H1(Ω). Then we have the asymptotic
expansion:

|(c(p− P 0
h1,h2

p), w)| ≤ Ch2∥p∥1∥w∥0, w ∈Wh1,h2 .

3. The Richardson extrapolation

In this section we turn to the asymptotic expansions between the mixed
finite element solution and the interpolation of the exact solution of the prob-
lem (14)-(17), from which asymptotic expansions between the exact solution
and the postprocessed mixed finite element solution by interpolation are fur-
ther obtained. The Richardson extrapolations of two different schemes will
be performed to generate high order approximations to the exact solution of
(14)-(17).

3.1. The global Richardson extrapolation in two directions

We first discuss the global extrapolation method of mixed finite element
approximation for (14)-(17) in both x and y directions as follows.

Theorem 3.1. Suppose that (y,ppp, z, qqq) and (yh1,h2 , ppph1,h2 , zh1,h2 , qqqh1,h2) are
the exact solution and the mixed finite element solution, respectively. Then we
have the following asymptotic expansions in the sense of the L2-norm under
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the conditions that y, z, c ∈ H3(Ω), ppp,qqq ∈ VVV ∩ (H4(Ω))2, and αij ∈ H4(Ω) (1 ≤
i, j ≤ 2) :

yh1,h2 − P 0
h1,h2

y = h2ξ1h1,h2
+ γ1h1,h2

, ∥γ1h1,h2
∥0 ≤ Ch4,

zh1,h2 − P 0
h1,h2

z = h2ξ2h1,h2
+ γ2h1,h2

, ∥γ2h1,h2
∥0 ≤ Ch4,

ppph1,h2 −Π0
h1,h2

ppp = h2η1h1,h2
+ γγγ1h1,h2

, ∥γγγ1h1,h2
∥V ≤ Ch4,

qqqh1,h2 −Π0
h1,h2

qqq = h2η2h1,h2
+ γγγ2h1,h2

, ∥γγγ2h1,h2
∥V ≤ Ch4,

where (ξ1h1,h2
, η1h1,h2

, ξ2h1,h2
, η2h1,h2

) ∈ (Wh1,h2 ×VVV 0,h1,h2)
2 and Π0

h1,h2
×P 0

h1,h2
:

VVV ×W → VVV 0,h1,h2 ×Wh1,h2 is the Raviart-Thomas projection operator.

Proof. Let

ρ1h1,h2
:= yh1,h2

− P 0
h1,h2

y, θ1h1,h2
:= ppph1,h2

−Π0
h1,h2

ppp,

ρ2h1,h2
:= zh1,h2 − P 0

h1,h2
z, θ2h1,h2

:= qqqh1,h2 −Π0
h1,h2

qqq.

From (14)-(17) and (20)-(23), we have the following error equations:

a(ppp− ppph1,h2 , vvv)− (y − yh1,h2 ,divvvv) = 0,(31)

(div(ppp− ppph1,h2), w) + (c(y − yh1,h2), w) + (z − zh1,h2 , w) = 0,(32)

a(qqq − qqqh1,h2 , vvv)− (z − zh1,h2 , divvvv) = 0,(33)

(div(qqq − qqqh1,h2), w) + (c(z − zh1,h2), w)− (y − yh1,h2 , w) = 0(34)

for all vvv ∈ VVV 0,h1,h2 and w ∈ Wh1,h2 . Then, it follows from (31)-(34) and
(26)-(27) that

a(θ1h1,h2
, vvv)− (ρ1h1,h2

, divvvv) = (α(ppp−Π0
h1,h2

ppp), vvv),(35)

(divθ1h1,h2
, w) + (cρ1h1,h2

, w) + (ρ2h1,h2
, w) = (c(y − P 0

h1,h2
y), w),(36)

a(θ2h1,h2
, vvv)− (ρ2h1,h2

, divvvv) = (α(qqq −Π0
h1,h2

qqq), vvv),(37)

(divθ2h1,h2
, w) + (cρ2h1,h2

, w)− (ρ1h1,h2
, w) = (c(z − P 0

h1,h2
z), w)(38)

for all vvv ∈ VVV 0,h1,h2 and w ∈ Wh1,h2 , where α = A−1. From Lemmas 2.1 and
2.2 we have

(α(ppp−Π0
h1,h2

ppp), vvv) = h2L1
h1,h2

(vvv) +O(h4)∥vvv∥0, ∀ vvv ∈ VVV 0,h1,h2 ,(39)

(c(y − P 0
h1,h2

y), w) = h2G1
h1,h2

(w) +O(h4)∥w∥0, ∀ w ∈Wh1,h2 ,(40)

(α(qqq −Π0
h1,h2

qqq), vvv) = h2L2
h1,h2

(vvv) +O(h4)∥vvv∥0, ∀ vvv ∈ VVV 0,h1,h2 ,(41)

(c(z − P 0
h1,h2

z), w) = h2G2
h1,h2

(w) +O(h4)∥w∥0, ∀ w ∈Wh1,h2
,(42)

where

L1
h1,h2

(ψψψ) =− 1

3

(
h1
h

)2 ∫
Ω

[α11(p1)xx + α12(p2)xx]ψ1dΩ

+
1

3

(
h1
h

)2 ∫
Ω

[(α22)x(p2)x − α21(p1)xx]ψ2dΩ
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+
1

3

(
h2
h

)2 ∫
Ω

[(α11)y(p1)y − α12(p2)yy]ψ1dΩ

− 1

3

(
h2
h

)2 ∫
Ω

[α22(p2)yy + α21(p1)yy]ψ2dΩ,

L2
h1,h2

(ψψψ) =− 1

3

(
h1
h

)2 ∫
Ω

[α11(q1)xx + α12(q2)xx]ψ1dΩ

+
1

3

(
h1
h

)2 ∫
Ω

[(α22)x(q2)x − α21(q1)xx]ψ2dΩ

+
1

3

(
h2
h

)2 ∫
Ω

[(α11)y(q1)y − α12(q2)yy]ψ1dΩ

− 1

3

(
h2
h

)2 ∫
Ω

[α22(q2)yy + α21(q1)yy]ψ2dΩ,

G1
h1,h2

(ϕ) =
1

3

(
h1
h

)2 ∫
Ω

cxyxϕdΩ+
1

3

(
h2
h

)2 ∫
Ω

cyyyϕdΩ,

G2
h1,h2

(ϕ) =
1

3

(
h1
h

)2 ∫
Ω

cxzxϕdΩ+
1

3

(
h2
h

)2 ∫
Ω

cyzyϕdΩ.

Here ψψψ = (ψ1, ψ2) is a vector-valued function. Obviously,

Li
h1/2,h2/2

(ψψψ) = Li
h1,h2

(ψψψ) and Gi
h1/2,h2/2

(ϕ) = Gi
h1,h2

(ϕ), i = 1, 2.

Let (ξ1, η1, ξ2, η2) ∈ (W×VVV 0)
2 and (ξ1h1,h2

, η1h1,h2
, ξ2h1,h2

, η2h1,h2
) ∈ (Wh1,h2

×
VVV 0,h1,h2)

2 be the exact solution and the mixed finite element solution, respec-
tively, of the following auxiliary problem:

a(η1, vvv)− (ξ1, divvvv) = L1
h1,h2

(vvv), ∀ vvv ∈ VVV 0,(43)

(divη1, w) + (cξ1, w) + (ξ2, w) = G1
h1,h2

(w), ∀ w ∈W,(44)

a(η2, vvv)− (ξ2, divvvv) = L2
h1,h2

(vvv), ∀ vvv ∈ VVV 0,(45)

(divη2, w) + (cξ2, w)− (ξ1, w) = G2
h1,h2

(w), ∀ w ∈W.(46)

Then, from (35)-(46) we can get that

a(θ1h1,h2
− h2η1h1,h2

, vvv)− (ρ1h1,h2
− h2ξ1h1,h2

,divvvv) = O(h4)∥vvv∥0,
(div(θ1h1,h2

− h2η1h1,h2
), w) + (c(ρ1h1,h2

− h2ξ1h1,h2
), w)

+ (ρ2h1,h2
− h2ξ2h1,h2

, w) = O(h4)∥w∥0,
a(θ2h1,h2

− h2η2h1,h2
, vvv)− (ρ2h1,h2

− h2ξ2h1,h2
,divvvv) = O(h4)∥vvv∥0,

(div(θ2h1,h2
− h2η2h1,h2

), w) + (c(ρ2h1,h2
− h2ξ2h1,h2

), w)

− (ρ1h1,h2
− h2ξ1h1,h2

, w) = O(h4)∥w∥0
for all vvv ∈ VVV 0,h1,h2 and w ∈Wh1,h2 . Set

θ̂ih1,h2
:= θih1,h2

− h2ηih1,h2
and ρ̂ih1,h2

:= ρih1,h2
− h2ξih1,h2

, i = 1, 2.
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Thus, we have

a(θ̂1h1,h2
, vvv)− (ρ̂1h1,h2

, divvvv) = O(h4)∥vvv∥0, ∀ vvv ∈ VVV 0,h1,h2 ,(47)

(divθ̂1h1,h2
, w) + (cρ̂1h1,h2

, w) + (ρ̂2h1,h2
, w) = O(h4)∥w∥0, ∀ w ∈Wh1,h2 ,(48)

a(θ̂2h1,h2
, vvv)− (ρ̂2h1,h2

, divvvv) = O(h4)∥vvv∥0, ∀ vvv ∈ VVV 0,h1,h2 ,(49)

(divθ̂2h1,h2
, w) + (cρ̂2h1,h2

, w)− (ρ̂1h1,h2
, w) = O(h4)∥w∥0, ∀ w ∈Wh1,h2 .(50)

Take vvv = θ̂1h1,h2
in (47), w = ρ̂1h1,h2

in (48), vvv = θ̂2h1,h2
in (49), and w = ρ̂2h1,h2

in (50), respectively, we easily obtain

a(θ̂1h1,h2
, θ̂1h1,h2

) + a(θ̂2h1,h2
, θ̂2h1,h2

) + (cρ̂1h1,h2
, ρ̂1h1,h2

) + (cρ̂2h1,h2
, ρ̂2h1,h2

)

= O(h4)(∥θ̂1h1,h2
∥0 + ∥θ̂2h1,h2

∥0 + ∥ρ̂1h1,h2
∥0 + ∥ρ̂2h1,h2

∥0),
yields to

∥θ̂1h1,h2
∥0 + ∥θ̂2h1,h2

∥0 + ∥ρ̂1h1,h2
∥0 + ∥ρ̂2h1,h2

∥0 ≤ Ch4.(51)

If we choose w = divθ̂1h1,h2
in (48), by use of (51), we get

∥divθ̂1h1,h2
∥0 ≤ Ch4.

Similarly, we see that

∥divθ̂2h1,h2
∥0 ≤ Ch4.

Thus, the proof of Theorem 3.1 is complete. □

Following the procedure for Theorem 3.1 and utilizing Corollaries 2.3 and
2.4 we can also prove the following result.

Lemma 3.2. If (ξ1, η1, ξ2, η2) ∈ (W ×VVV 0)
2 and (ξ1h1,h2

, η1h1,h2
, ξ2h1,h2

, η2h1,h2
) ∈

(Wh1,h2 × VVV 0,h1,h2)
2 be the variational solution and the mixed finite element

solution of (43)-(46), respectively, then we have the superconvergent estimate

∥ξ1h1,h2
− P 0

h1,h2
ξ1∥0 + ∥ξ2h1,h2

− P 0
h1,h2

ξ2∥0 + ∥η1h1,h2
−Π0

h1,h2
η1∥0

+∥η2h1,h2
−Π0

h1,h2
η2∥0 ≤ Ch2(∥η1∥2 + ∥η2∥2 + ∥ξ1∥1 + ∥ξ2∥1).(52)

Now we use the interpolation postprocessing technique to get a global extrap-
olation approximation of high accuracy in both x and y directions. Analogous
to [22] we need two define two postprocessing interpolation operators Π3

4h1,4h2

and P 3
4h1,4h2

to satisfy

Π3
4h1,4h2

Π0
h1,h2

= Π3
4h1,4h2

,(53)

∥Π3
4h1,4h2

vvv∥0 ≤ C∥vvv∥0, ∀ vvv ∈ VVV 0,h1,h2 ,(54)

∥Π3
4h1,4h2

u− u∥0 ≤ Ch4∥u∥4, ∀ u ∈ (H4(Ω))2,(55)

P 3
4h1,4h2

P 0
h1,h2

= P 3
4h1,4h2

,(56)

∥P 3
4h1,4h2

w∥0 ≤ C∥w∥0, ∀ w ∈Wh1,h2 ,(57)

∥P 3
4h1,4h2

p− p∥0 ≤ Ch4∥p∥4, ∀ p ∈ H4(Ω).(58)
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To this end, assume that the rectangular partition Th1,h2 has been obtained
from T4h1,4h2 with mesh size 4h by subdividing each element of T4h1,4h2 into

sixteen small congruent rectangles. Let τ :=
∪16

i=1 ei with ei ∈ T . We define two
projection operators Π3

4h1,4h2
and P 3

4h1,4h2
associated with T4h1,4h2 of degree at

most 3 in x and y on τ , respectively, according to the following conditions:

Π3
4h1,4h2

u|τ ∈ Q4,3(τ)×Q3,4(τ), P 3
4h1,4h2

p|τ ∈ Q3,3(τ),(59) ∫
si

(u−Π3
4h1,4h2

u) · nds = 0, i = 1, 2, . . . , 40,(60) ∫
ei

(p− P 3
4h1,4h2

p) = 0, i = 1, 2, . . . , 16,(61)

where si(i = 1, 2, . . . , 40) is one of the forty sides of the sixteen small elements
ei(i = 1, 2, . . . , 16). It is easy to check that the two operators Π3

4h1,4h2
and

P 3
4h1,4h2

defined by (59)-(61) satisfy the properties described in (53)-(58).

Theorem 3.3. We have under the conditions of Theorem 3.1 that

P 3
4h1,4h2

yh1,h2
− y = h2ξ1 + γ1∗h1,h2

, ∥γ1∗h1,h2
∥0 ≤ Ch4,

P 3
4h1,4h2

zh1,h2 − z = h2ξ2 + γ2∗h1,h2
, ∥γ2∗h1,h2

∥0 ≤ Ch4,

Π3
4h1,4h2

ppph1,h2 − ppp = h2η1 + γγγ1∗h1,h2
, ∥γγγ1∗h1,h2

∥0 ≤ Ch4,

Π3
4h1,4h2

qqqh1,h2 − qqq = h2η2 + γγγ2∗h1,h2
, ∥γγγ2∗h1,h2

∥0 ≤ Ch4,

where (ξ1, η1, ξ2, η2) ∈ (W × VVV 0)
2 is the variational solution of (43)-(46).

Proof. Let

γ̄1h1,h2
:= yh1,h2 − P 0

h1,h2
y − h2P 0

h1,h2
ξ1.

Then, it follows from Theorem 3.1 and Lemma 3.2 that

∥γ̄1h1,h2
∥0 ≤ Ch4.

Thus, we will find from (56)-(58) that

P 3
4h1,4h2

yh1,h2 − y

= P 3
4h1,4h2

(yh1,h2 − P 0
h1,h2

y) + (P 3
4h1,4h2

y − y)

= P 3
4h1,4h2

(h2P 0
h1,h2

ξ1 + γ̄1h1,h2
) + (P 3

4h1,4h2
y − y)

= h2P 3
4h1,4h2

ξ1 + P 3
4h1,4h2

γ̄1h1,h2
+ (P 3

4h1,4h2
y − y)

= h2ξ1 + h2(P 3
4h1,4h2

ξ1 − ξ1) + P 3
4h1,4h2

γ̄1h1,h2
+ (P 3

4h1,4h2
y − y)

= h2ξ1 + γ1∗h1,h2
,

where

γ1∗h1,h2
:= h2(P 3

4h1,4h2
ξ1 − ξ1) + P 3

4h1,4h2
γ̄1h1,h2

+ (P 3
4h1,4h2

y − y)

with ∥γ1∗h1,h2
∥0 ≤ Ch4. Analogously, we can also get other equalities in the

theorem. □
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Theorem 3.3 guarantees that we can use low order mixed finite element solu-
tions to generate high order approximations by the Richardson extrapolation.
And thus, we employ, in addition to Wh1,h2 × VVV 0,h1,h2 the Raviart-Thomas
mixed finite element space Wh1/2,h2/2 ×VVV 0,h1/2,h2/2 of the lowest order gained
by subdividing each element ei ∈ Th1,h2 into four small congruent elements
êi,j ∈ Th1/2,h2/2(j = 1, 2, 3, 4). Denote by (yh1/2,h2/2, ppph1/2,h2/2, zh1/2,h2/2,

qqqh1/2,h2/2) ∈ (Wh1/2,h2/2 × VVV 0,h1/2,h2/2)
2 and Π3

2h1,2h2
× P 3

2h1,2h2
the mixed

finite element approximation and the Raviart-Thomas projection of degree at
most 3 in x and y with respect to this new partition. From Theorem 3.3 we
know under the L2-norm that

P 3
2h1,2h2

yh1/2,h2/2 − y =

(
h

2

)2

ξ1 +O(h4),

which produces by applying the Richardson extrapolation that under the L2-
norm

4P 3
2h1,2h2

yh1/2,h2/2 − P 3
4h1,4h2

yh1,h2

3
= y +O(h4).(62)

Similarly, we have under the L2-norm that

4P 3
2h1,2h2

zh1/2,h2/2 − P 3
4h1,4h2

zh1,h2

3
= z +O(h4),(63)

4Π3
2h1,2h2

ppph1/2,h2/2 − P 3
4h1,4h2

ppph1,h2

3
= ppp+O(h4),(64)

4Π3
2h1,2h2

qqqh1/2,h2/2 − P 3
4h1,4h2

qqqh1,h2

3
= qqq +O(h4).(65)

It is very important for a mixed finite element method to have a computable
a posteriori error estimator such that we can assess the accuracy of the approx-
imate solutions by means of the error estimator in applications. The supercon-
vergent approximations generated above in (62)-(65) can be used naturally to
produce efficient a posteriori error estimators. In fact, we have by the same
way as in Theorem 5.3 in [14] that the following theorem holds.

Theorem 3.4. Under the assumptions of Theorem 3.3, we have

∥y − P 3
2h1,2h2

yh1/2,h2/2∥0

=
1

3
∥P 3

2h1,2h2
yh1/2,h2/2 − P 3

4h1,4h2
yh1,h2∥0 +O(h4),(66)

∥z − P 3
2h1,2h2

zh1/2,h2/2∥0

=
1

3
∥P 3

2h1,2h2
zh1/2,h2/2 − P 3

4h1,4h2
zh1,h2∥0 +O(h4),(67)

∥ppp−Π3
2h1,2h2

ppph1/2,h2/2∥0

=
1

3
∥Π3

2h1,2h2
ppph1/2,h2/2 −Π3

4h1,4h2
ppph1,h2

∥0 +O(h4),(68)
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∥qqq −Π3
2h1,2h2

qqqh1/2,h2/2∥0

=
1

3
∥Π3

2h1,2h2
qqqh1/2,h2/2 −Π3

4h1,4h2
qqqh1,h2∥0 +O(h4).(69)

In addition, if there exist positive constants C1, C2, C3, C4 and ϵ1, ϵ2, ϵ3, ϵ4 ∈
(0, 1) such that

∥y − P 3
2h1,2h2

yh1/2,h2/2∥0 ≥ C1h
4−ϵ1 ,(70)

∥z − P 3
2h1,2h2

zh1/2,h2/2∥0 ≥ C2h
4−ϵ2 ,(71)

∥ppp−Π3
2h1,2h2

ppph1/2,h2/2∥0 ≥ C3h
4−ϵ3 ,(72)

∥qqq − P 3
2h1,2h2

qqqh1/2,h2/2∥0 ≥ C4h
4−ϵ4 ,(73)

then we have

lim
h→0

3∥y − P 3
2h1,2h2

yh1/2,h2/2∥0
∥P 3

2h1,2h2
yh1/2,h2/2 − P 3

4h1,4h2
yh1,h2∥0

= 1,(74)

lim
h→0

3∥z − P 3
2h1,2h2

zh1/2,h2/2∥0
∥P 3

2h1,2h2
zh1/2,h2/2 − P 3

4h1,4h2
zh1,h2∥0

= 1,(75)

lim
h→0

3∥ppp−Π3
2h1,2h2

ppph1/2,h2/2∥0
∥Π3

2h1,2h2
ppph1/2,h2/2 −Π3

4h1,4h2
ppph1,h2∥0

= 1,(76)

lim
h→0

3∥qqq −Π3
2h1,2h2

qqqh1/2,h2/2∥0
∥Π3

2h1,2h2
qqqh1/2,h2/2 −Π3

4h1,4h2
qqqh1,h2∥0

= 1.(77)

From (66) we see that the computable error estimator 1
3∥P

3
2h1,2h2

yh1/2,h2/2−
P 3
4h1,4h2

yh1,h2∥0 is the principal part of the error ∥y−P 3
2h1,2h2

yh1/2,h2/2∥0, and
can be used as a posteriori error indicator to assess the accuracy of the pressure
error ∥y − P 3

2h1,2h2
yh1/2,h2/2∥0. Meanwhile, the condition (70) seems to be a

reasonable assumption because O(h2) is the optimal convergence rate of ∥y −
P 3
2h1,2h2

yh1/2,h2/2∥0 according to Theorem 3.3. Also, it can be further seen from

(74) that the a posteriori error estimator 1
3∥P

3
2h1,2h2

yh1/2,h2/2−P 3
4h1,4h2

yh1,h2∥0
is quite reliable. The same comments are also valid for (67)-(69), (71)-(73), and
(75)-(77).

3.2. The global Richardson extrapolation in one direction

The approach introduced in the last subsection has a limitation in that it
requires a global and uniform refinement in both the x- and y-directions, and
hence, it wastes computing time and memory. To overcome this shortcoming,
here we propose an extrapolation method of a partial refinement [22], in which
the meshes are fined just in either the x- and y- direction. Thus, this method
is more efficient and is also more suitable for parallel computations.

Theorem 3.5. Under the conditions of Theorem 3.1, we have in the sense of
the L2-norm that

yh1,h2 − P 0
h1,h2

y = h21ξ
11
h1,h2

+ h22ξ
12
h1,h2

+ r1h1,h2
, ∥r1h1,h2

∥0 ≤ Ch4,
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zh1,h2 − P 0
h1,h2

z = h21ξ
21
h1,h2

+ h22ξ
22
h1,h2

+ r2h1,h2
, ∥r2h1,h2

∥0 ≤ Ch4,

ppph1,h2 −Π0
h1,h2

ppp = h21η
11
h1,h2

+ h22η
12
h1,h2

+ rrr1h1,h2
, ∥rrr1h1,h2

∥V ≤ Ch4,

qqqh1,h2 −Π0
h1,h2

qqq = h21η
21
h1,h2

+ h22η
22
h1,h2

+ rrr2h1,h2
, ∥rrr2h1,h2

∥V ≤ Ch4,

where (ξ11h1,h2
, η11h1,h2

, ξ21h1,h2
, η21h1,h2

), (ξ12h1,h2
, η12h1,h2

, ξ22h1,h2
, η22h1,h2

) ∈ (Wh1,h2 ×
VVV 0,h1,h2)

2 and Π0
h1,h2

× P 0
h1,h2

: VVV ×W → VVV 0,h1,h2 ×Wh1,h2 is the Raviart-
Thomas projection operator.

Proof. Let (ξ11, η11, ξ21, η21), (ξ12, η12, ξ22, η22) ∈ (W×VVV 0)
2 and (ξ11h1,h2

, η11h1,h2
,

ξ21h1,h2
, η21h1,h2

), (ξ12h1,h2
, η12h1,h2

, ξ22h1,h2
, η22h1,h2

) ∈ (Wh1,h2 ×VVV 0,h1,h2)
2 be the exact

solutions and the mixed finite element solutions, respectively, of the following
two auxiliary variational problem:

a(η11, vvv)− (ξ11, divvvv) = L1(vvv), ∀ vvv ∈ VVV 0,(78)

(divη11, w) + (cξ11, w) + (ξ21, w) = L5(w), ∀ w ∈W,(79)

a(η21, vvv)− (ξ21, divvvv) = L2(vvv), ∀ vvv ∈ VVV 0,(80)

(divη21, w) + (cξ21, w)− (ξ11, w) = L6(w), ∀ w ∈W,(81)

and

a(η12, vvv)− (ξ12, divvvv) = L3(vvv), ∀ vvv ∈ VVV 0,(82)

(divη12, w) + (cξ12, w) + (ξ22, w) = L7(w), ∀ w ∈W,(83)

a(η22, vvv)− (ξ22, divvvv) = L4(vvv), ∀ vvv ∈ VVV 0,(84)

(divη22, w) + (cξ22, w)− (ξ12, w) = L8(w), ∀ w ∈W,(85)

where

L1(vvv) =− 1

3

∫
Ω

[α11(p1)xx + α12(p2)xx]v1dΩ

+
1

3

∫
Ω

[(α22)x(p2)x − α21(p1)xx]v2dΩ,

L2(vvv) =− 1

3

∫
Ω

[α11(q1)xx + α12(q2)xx]v1dΩ

+
1

3

∫
Ω

[(α22)x(q2)x − α21(q1)xx]v2dΩ,

L3(vvv) =
1

3

∫
Ω

[(α11)y(p1)y − α12(p2)yy]v1dΩ

− 1

3

∫
Ω

[α22(p2)yy + α21(p1)yy]v2dΩ,

L4(vvv) =
1

3

∫
Ω

[(α11)y(q1)y − α12(q2)yy]v1dΩ

− 1

3

∫
Ω

[α22(q2)yy + α21(q1)yy]v2dΩ,
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L5(w) =
1

3

∫
Ω

cxyxϕdΩ, L6(w) =
1

3

∫
Ω

cxzxϕdΩ,

L7(w) =
1

3

∫
Ω

cyyyϕdΩ, L8(w) =
1

3

∫
Ω

cyzyϕdΩ.

Then, it follows from (35)-(38) and Lemmas 2.1 and 2.2 that

a(θ1h1,h2
, vvv)− (ρ1h1,h2

,divvvv) = h21L1(vvv) + h22L3(vvv) +O(h4)∥vvv∥0,(86)

(divθ1h1,h2
, w) + (cρ1h1,h2

, w) + (ρ2h1,h2
, w)

= h21L5(w) + h22L7(w) +O(h4)∥w∥0,(87)

a(θ2h1,h2
, vvv)− (ρ2h1,h2

,divvvv) = h21L2(vvv) + h22L4(vvv) +O(h4)∥vvv∥0,(88)

(divθ2h1,h2
, w) + (cρ2h1,h2

, w)− (ρ1h1,h2
, w)

= h21L6(w) + h22L8(w) +O(h4)∥w∥0(89)

for all vvv ∈ VVV 0,h1,h2 and w ∈Wh1,h2 . Set

θ̌ih1,h2
:= θih1,h2

− h21η
i1
h1,h2

− h22η
i2
h1,h2

and

ρ̌ih1,h2
:= ρih1,h2

− h21ξ
i1
h1,h2

− h22ξ
i2
h1,h2

, i = 1, 2.

Thus, we have from (78)-(89)

a(θ̌1h1,h2
, vvv)− (ρ̌1h1,h2

, divvvv) = O(h4)∥vvv∥0, ∀ vvv ∈ VVV 0,h1,h2 ,(90)

(divθ̌1h1,h2
, w) + (cρ̌1h1,h2

, w) + (ρ̌2h1,h2
, w) = O(h4)∥w∥0, ∀ w ∈Wh1,h2 ,(91)

a(θ̌2h1,h2
, vvv)− (ρ̌2h1,h2

, divvvv) = O(h4)∥vvv∥0, ∀ vvv ∈ VVV 0,h1,h2 ,(92)

(divθ̌2h1,h2
, w) + (cρ̌2h1,h2

, w)− (ρ̌1h1,h2
, w) = O(h4)∥w∥0, ∀ w ∈Wh1,h2

.(93)

Following the steps for the estimates in the proof Theorem 3.1 yields by means
of (90)-(93) that

∥θ̌1h1,h2
∥V + ∥θ̌2h1,h2

∥V + ∥ρ̌1h1,h2
∥0 + ∥ρ̌2h1,h2

∥0 ≤ Ch4. □

By the same argument as that for Theorem 3.3, we can establish the following
result.

Theorem 3.6. We have under the conditions of Theorem 3.5 that

P 3
4h1,4h2

yh1,h2 − y = h21ξ
11 + h22ξ

12 + r̃1h1,h2
, ∥r̃1h1,h2

∥0 ≤ Ch4,

P 3
4h1,4h2

zh1,h2 − z = h21ξ
21 + h22ξ

22 + r̃2h1,h2
, ∥r̃2h1,h2

∥0 ≤ Ch4,

Π3
4h1,4h2

ppph1,h2 − ppp = h21η
11 + h22η

12 + r̃rr1h1,h2
, ∥r̃rr1h1,h2

∥0 ≤ Ch4,

Π3
4h1,4h2

qqqh1,h2 − qqq = h21η
21 + h22η

22 + r̃rr2h1,h2
, ∥r̃rr2h1,h2

∥0 ≤ Ch4,

where (ξ11, η11, ξ21, η21), (ξ12, η12, ξ22, η22) ∈ (W × VVV 0)
2 are the variational

solutions of (78)-(81) and (82)-(85), respectively.
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From Theorem 3.6 one can obtain the following unidirectional Richardson
extrapolation results under the L2-norm:

4(P 3
2h1,4h2

yh1/2,h2
+ P 3

4h1,2h2
yh1,h2/2)− 5P 3

4h1,4h2
yh1,h2

3
= y +O(h4),(94)

4(P 3
2h1,4h2

zh1/2,h2
+ P 3

4h1,2h2
zh1,h2/2)− 5P 3

4h1,4h2
zh1,h2

3
= z +O(h4),(95)

4(Π3
2h1,4h2

ppph1/2,h2
+Π3

4h1,2h2
ppph1,h2/2)− 5Π3

4h1,4h2
ppph1,h2

3
= ppp+O(h4),(96)

4(Π3
2h1,4h2

qqqh1/2,h2
+Π3

4h1,2h2
qqqh1,h2/2)− 5Π3

4h1,4h2
qqqh1,h2

3
= qqq +O(h4),(97)

where (yh1/2,h2
, ppph1/2,h2

, zh1/2,h2
, qqqh1/2,h2

), (yh1,h2/2, ppph1,h2/2, zh1,h2/2, qqqh1,h2/2),
and (yh1,h2 , ppph1,h2 , zh1,h2 , qqqh1,h2) are the mixed finite element solutions corre-
sponding to the meshes Th1/2,h2

, Th1,h2/2, and Th1,h2 , respectively, and Th1/2,h2

as well as Th1,h2/2 are gained by subdividing each element of Th1,h2 into small
congruent rectangles in the x-direction and y-direction, respectively.

Similar to (62)-(65), we can also construct a posteriori error estimators by
virtue of (94)-(97).

Theorem 3.7. Under the assumptions of Theorem 3.6, we have

∥y − P 3
2h1,4h2

yh1/2,h2
∥0

=
1

3
∥P 3

2h1,4h2
yh1/2,h2

+ 4P 3
4h1,2h2

yh1,h2/2 − 5P 3
4h1,4h2

yh1,h2∥0 +O(h4),

∥z − P 3
2h1,4h2

zh1/2,h2
∥0

=
1

3
∥P 3

2h1,4h2
zh1/2,h2

+ 4P 3
4h1,2h2

zh1,h2/2 − 5P 3
4h1,4h2

zh1,h2∥0 +O(h4),

∥ppp−Π3
2h1,4h2

ppph1/2,h2
∥0

=
1

3
∥Π3

2h1,4h2
ppph1/2,h2

+ 4Π3
4h1,2h2

ppph1,h2/2 − 5Π3
4h1,4h2

ppph1,h2∥0 +O(h4),

∥qqq −Π3
2h1,4h2

qqqh1/2,h2
∥0

=
1

3
∥Π3

2h1,4h2
qqqh1/2,h2

+ 4Π3
4h1,2h2

qqqh1,h2/2 − 5Π3
4h1,4h2

qqqh1,h2∥0 +O(h4),

∥y − P 3
4h1,2h2

yh1,h2/2∥0

=
1

3
∥P 3

4h1,2h2
yh1,h2/2 + 4P 3

2h1,4h2
yh1/2,h2

− 5P 3
4h1,4h2

yh1,h2∥0 +O(h4),

∥z − P 3
4h1,2h2

zh1,h2/2∥0

=
1

3
∥P 3

4h1,2h2
zh1,h2/2 + 4P 3

2h1,4h2
zh1/2,h2

− 5P 3
4h1,4h2

zh1,h2∥0 +O(h4),

∥ppp−Π3
4h1,2h2

ppph1,h2/2∥0

=
1

3
∥Π3

4h1,2h2
ppph1,h2/2 + 4Π3

2h1,4h2
ppph1/2,h2

− 5Π3
4h1,4h2

ppph1,h2
∥0 +O(h4),
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∥qqq −Π3
4h1,2h2

qqqh1,h2/2∥0

=
1

3
∥Π3

4h1,2h2
qqqh1,h2/2 + 4Π3

2h1,4h2
qqqh1/2,h2

− 5Π3
4h1,4h2

qqqh1,h2∥0 +O(h4).

Moreover, if there exist positive constants C1, C2, . . . , C8 and ϵ1, ϵ2, . . . , ϵ8 ∈
(0, 1) such that

∥y − P 3
2h1,4h2

yh1/2,h2
∥0 ≥ C1h

4−ϵ1 ,

∥z − P 3
2h1,4h2

zh1/2,h2
∥0 ≥ C2h

4−ϵ2 ,

∥ppp−Π3
2h1,4h2

ppph1/2,h2
∥0 ≥ C3h

4−ϵ3 ,

∥qqq − P 3
2h1,4h2

qqqh1/2,h2
∥0 ≥ C4h

4−ϵ4 ,

∥y − P 3
4h1,2h2

yh1,h2/2∥0 ≥ C5h
4−ϵ5 ,

∥z − P 3
4h1,2h2

zh1,h2/2∥0 ≥ C6h
4−ϵ6 ,

∥ppp−Π3
4h1,2h2

ppph1,h2/2∥0 ≥ C7h
4−ϵ7 ,

∥qqq − P 3
4h1,2h2

qqqh1,h2/2∥0 ≥ C8h
4−ϵ8 ,

then we have

lim
h→0

3∥y − P 3
2h1,4h2

yh1/2,h2
∥0

∥P 3
2h1,4h2

yh1/2,h2
+ 4P 3

4h1,2h2
yh1,h2/2 − 5P 3

4h1,4h2
yh1,h2∥0

= 1,

lim
h→0

3∥z − P 3
2h1,4h2

zh1/2,h2
∥0

∥P 3
2h1,4h2

zh1/2,h2
+ 4P 3

4h1,2h2
zh1,h2/2 − 5P 3

4h1,4h2
zh1,h2∥0

= 1,

lim
h→0

3∥ppp−Π3
2h1,4h2

ppph1/2,h2
∥0

∥Π3
2h1,4h2

ppph1/2,h2
+ 4Π3

4h1,2h2
ppph1,h2/2 − 5Π3

4h1,4h2
ppph1,h2∥0

= 1,

lim
h→0

3∥qqq −Π3
2h1,4h2

qqqh1/2,h2
∥0

∥Π3
2h1,4h2

qqqh1/2,h2
+ 4Π3

4h1,2h2
qqqh1,h2/2 − 5Π3

4h1,4h2
qqqh1,h2∥0

= 1,

lim
h→0

3∥y − P 3
4h1,2h2

yh1,h2/2∥0
∥P 3

4h1,2h2
yh1,h2/2 + 4P 3

2h1,4h2
yh1/2,h2

− 5P 3
4h1,4h2

yh1,h2∥0
= 1,

lim
h→0

3∥z − P 3
4h1,2h2

zh1,h2/2∥0
∥P 3

4h1,2h2
zh1,h2/2 + 4P 3

2h1,4h2
zh1/2,h2

− 5P 3
4h1,4h2

zh1,h2
∥0

= 1,

lim
h→0

3∥ppp−Π3
4h1,2h2

ppph1,h2/2∥0
∥Π3

4h1,2h2
ppph1,h2/2 + 4Π3

2h1,4h2
ppph1/2,h2

− 5Π3
4h1,4h2

ppph1,h2∥0
= 1,

lim
h→0

3∥qqq −Π3
4h1,2h2

qqqh1,h2/2∥0
∥Π3

4h1,2h2
qqqh1,h2/2 + 4Π3

2h1,4h2
qqqh1/2,h2

− 5Π3
4h1,4h2

qqqh1,h2∥0
= 1.

4. The interpolation defect correction

In this section we propose and investigate an interpolation defect correction
scheme (see, for example, [6, 23]) applied to the mixed finite element solution
(yh1,h2 , ppph1,h2 , zh1,h2 , qqqh1,h2) ∈ (Wh1,h2 × VVV 0,h1,h2)

2 to obtain approximations



EXTRAPOLATION AND DEFECT CORRECTION FOR CONTROL PROBLEMS 565

with higher convergence rate. Also, these new approximations are naturally
used to form a posteriori error estimators in order to estimate the actual accu-
racy of the mixed finite element solutions.

First of all, for the future need we construct two projection interpolation
operators Π1

2h1,2h2
and P 1

2h1,2h2
associated with T2h1,2h2 satisfy

Π1
2h1,2h2

Π0
h1,h2

= Π1
2h1,2h2

,(98)

∥Π1
2h1,2h2

vvv∥0 ≤ C∥vvv∥0, ∀ vvv ∈ VVV 0,h1,h2 ,(99)

∥Π1
2h1,2h2

u− u∥0 ≤ Ch2∥u∥2, ∀ u ∈ (H2(Ω))2,(100)

P 1
2h1,2h2

P 0
h1,h2

= P 1
2h1,2h2

,(101)

∥P 1
2h1,2h2

w∥0 ≤ C∥w∥0, ∀ w ∈Wh1,h2 ,(102)

∥P 1
2h1,2h2

p− p∥0 ≤ Ch2∥p∥2, ∀ p ∈ H2(Ω).(103)

Then, like that seen in the last section, it is assumed that the rectangular
partition Th1,h2 has been obtained from T2h1,2h2 with mesh size 2h by sub-
dividing each element of T2h1,2h2 into four small congruent rectangles. Let

ê :=
∪4

i=1 ei with ei ∈ Th1,h2 . And this, the two interpolation operators
Π1

2h1,2h2
and P 1

2h1,2h2
associated with T2h1,2h2 of degree at most 1 in x and

y on ê, respectively, and defined as follows:

Π1
2h1,2h2

u|ê ∈ Q2,1(ê)×Q1,2(ê), P 1
2h1,2h2

p|ê ∈ Q1,1(ê),∫
si

(u−Π1
2h1,2h2

u) · nds = 0, i = 1, 2, . . . , 12,∫
ei

(p− P 1
2h1,2h2

p) = 0, i = 1, 2, 3, 4,

where si(i = 1, 2, . . . , 12) is one of the twelve sides of the four small elements
ei(i = 1, 2, 3, 4). We can also check that the two operators Π1

2h1,2h2
and P 1

2h1,2h2

defined above satisfy the properties indicated in (98)-(103).
In addition, we also need two pairs of mixed finite element projection op-

erators R1
h1,h2

× S1
h1,h2

× R2
h1,h2

× S2
h1,h2

:(W × VVV 0)
2 → (Wh1,h2 × VVV 0,h1,h2)

2

defined by

a(S1
h1,h2

ppp− ppp,vvv)− (R1
h1,h2

y − y, divvvv) = 0,

(div(S1
h1,h2

ppp− ppp), w) + (c(R1
h1,h2

y − y), w) + (R2
h1,h2

z − z, w) = 0,

a(S2
h1,h2

qqq − qqq,vvv)− (R2
h1,h2

z − z, divvvv) = 0,

(div(S2
h1,h2

qqq − qqq), w) + (c(R2
h1,h2

z − z), w)− (R1
h1,h2

y − y, w) = 0

for all vvv ∈ VVV 0,h1,h2 and w ∈ Wh1,h2 . Then, (R1
h1,h2

y, S1
h1,h2

ppp,R2
h1,h2

z, S2
h1,h2

qqq)

is the solution of (20)-(23) if (y,ppp, z, qqq) is the solution of (14)-(17).

Theorem 4.1. Suppose that the conditions of Theorem 3.3 are fulfilled. Then,
we have

∥y∗h1,h2
− y∥0 + ∥z∗h1,h2

− z∥0 + ∥ppp∗h1,h2
− ppp∥0 + ∥qqq∗h1,h2

− qqq∥0 ≤ Ch4,(104)
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where

y∗h1,h2
:= P 3

4h1,4h2
yh1,h2 + P 1

2h1,2h2
yh1,h2 − P 1

2h1,2h2
R1

h1,h2
P 3
4h1,4h2

yh1,h2 ,

z∗h1,h2
:= P 3

4h1,4h2
zh1,h2 + P 1

2h1,2h2
zh1,h2 − P 1

2h1,2h2
R2

h1,h2
P 3
4h1,4h2

zh1,h2 ,

ppp∗h1,h2
:= Π3

4h1,4h2
ppph1,h2 +Π1

2h1,2h2
ppph1,h2 −Π1

2h1,2h2
S1
h1,h2

Π3
4h1,4h2

ppph1,h2 ,

qqq∗h1,h2
:= Π3

4h1,4h2
qqqh1,h2 +Π1

2h1,2h2
qqqh1,h2 −Π1

2h1,2h2
S2
h1,h2

Π3
4h1,4h2

qqqh1,h2 .

Proof. It has been proved in Theorem 3.3 that

P 3
4h1,4h2

yh1,h2 − y = h2ξ1 + γ1∗h1,h2
, ∥γ1∗h1,h2

∥0 ≤ Ch4.

Then, multiplying this equality by the operator (I − P 1
2h1,2h2

R1
h1,h2

), where I
is the identity operator, results in

(I − P 1
2h1,2h2

R1
h1,h2

)(P 3
4h1,4h2

yh1,h2 − y)

= h2(I − P 1
2h1,2h2

R1
h1,h2

)ξ1 +O(h4)

= h2(ξ1 − P 1
2h1,2h2

ξ1) + h2(P 1
2h1,2h2

ξ1 − P 1
2h1,2h2

ξ1h1,h2
) +O(h4)

= h2P 1
2h1,2h2

(P 0
h1,h2

ξ1 − ξ1h1,h2
) +O(h4),

where we used

∥ξ1 − P 1
2h1,2h2

ξ1∥0 ≤ Ch2∥ξ1∥2 and P 1
2h1,2h2

P 0
h1,h2

= P 1
2h1,2h2

according to the properties of the operator P 1
2h1,2h2

described in (101)-(103).
Furthermore, it follows from Lemma 3.2 and the inequality

∥P 1
2h1,2h2

(P 0
h1,h2

ξ1 − ξ1h1,h2
)∥0 ≤ C∥P 0

h1,h2
ξ1 − ξ1h1,h2

∥0
that

(I − P 1
2h1,2h2

R1
h1,h2

)(P 3
4h1,4h2

yh1,h2 − y) = O(h4),

and the left-hand side is nothing but

(I − P 1
2h1,2h2

R1
h1,h2

)(P 3
4h1,4h2

yh1,h2 − y) = y∗h1,h2
− y.

Similarly, we can gain other terms of (104). □
Analogous to Section 3 we can utilize the superconvergent approximation

provided in Theorem 4.1 to establish a posteriori error estimators for the mixed
finite element solution of the problem (14)-(17). In fact, we have:

Theorem 4.2. If the conditions of Theorem 4.1 are satisfied, then we have

∥y − yh1,h2
∥0 = ∥y∗h1,h2

− yh1,h2
∥0 +O(h4),

∥z − zh1,h2∥0 = ∥z∗h1,h2
− zh1,h2∥0 +O(h4),

∥ppp− ppph1,h2∥0 = ∥ppp∗h1,h2
− ppph1,h2∥0 +O(h4),

∥qqq − qqqh1,h2∥0 = ∥qqq∗h1,h2
− qqqh1,h2∥0 +O(h4).

Furthermore, if there exist positive constants C1, C2, C3, C4 and sufficiently
small ϵ1, ϵ2, ϵ3, ϵ4 ∈ (0, 1) such that

∥y − yh1,h2∥0 ≥ C1h
4−ϵ1 , ∥z − zh1,h2∥0 ≥ C2h

4−ϵ2 ,
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∥ppp− ppph1,h2∥0 ≥ C3h
4−ϵ3 , ∥qqq − qqqh1,h2∥0 ≥ C4h

4−ϵ4 ,

then there hold

lim
h→0

∥y − yh1,h2∥0
∥y∗h1,h2

− yh1,h2∥0
= 1, lim

h→0

∥z − zh1,h2∥0
∥z∗h1,h2

− zh1,h2∥0
= 1,

lim
h→0

∥ppp− ppph1,h2∥0
∥ppp∗h1,h2

− ppph1,h2∥0
= 1, lim

h→0

∥qqq − qqqh1,h2∥0
∥qqq∗h1,h2

− qqqh1,h2∥0
= 1.

5. Conclusion and future works

In this paper, we derived asymptotic error expansions in the sense of L2-
norm for the mixed finite element approximation to a class of optimal control
problems under rectangular meshes. Based on the asymptotic error expansions,
the Richardson extrapolation of two different schemes and an interpolation de-
fect correction are given. Furthermore, as a result of all these higher order
numerical approximations, they can be used to generate a posteriori error es-
timators for the mixed finite element approximation. It should be pointed out
that the assumption of the high regularity of the solutions to the state and
adjoint equations is too strong for many practical problems. However, is still
significant to provide these numerical schemes with high accuracy for optimal
control problems in either theory or practice.

There are many important issues remaining to be addressed in this area,
including high accuracy analysis in the sense of L∞-norm and for more com-
plicated control problems. Moreover, many computational issues have to be
addressed for designing high accurate numerical methods for the optimal con-
trol problems.
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