• 제목/요약/키워드: Mixed Finite Element

검색결과 317건 처리시간 0.217초

Stabilization of pressure solutions in four-node quadrilateral elements

  • Lee, Sang-Ho;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.711-725
    • /
    • 1998
  • Mixed finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements. The criterion for the stability in the pressure solution is the so-called Babu$\check{s}$ka-Brezzi stability condition, and the four-node elements based on mixed variational principles do not appear to satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element edges proposed by Hughes and Franca is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. Also, a solid mechanics problem is presented by which the stability of mixed elements can be studied. It is shown that the pressure solutions, although stable, are shown to exhibit sensitivity to the stabilization parameters.

A Simple Mixed-Based Approach for Thin-Walled Composite Blades with Two-Cell Sections

  • Jung Sung Nam;Park Il-Ju
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2016-2024
    • /
    • 2005
  • In this work, a mixed beam approach that combines both the stiffness and the flexibility methods has been performed to analyze the coupled composite blades with closed, two-cell cross-sections. The Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. Only the membrane part of the shell wall is taken into account to make the analysis simple and also to deliver a clear picture of the mixed method. All the cross section stiffness coefficients as well as the distribution of shear across the section are evaluated in a closed-form through the beam formulation. The theory is validated against experimental test data, detailed finite element analysis results, and other analytical results for coupled composite blades with a two-cell airfoil section. Despite the simple kinematic model adopted in the theory, an accuracy comparable to that of two-dimensional finite element analysis has been obtained for cases considered in this study.

TWO-SCALE PRODUCT APPROXIMATION FOR SEMILINEAR PARABOLIC PROBLEMS IN MIXED METHODS

  • Kim, Dongho;Park, Eun-Jae;Seo, Boyoon
    • 대한수학회지
    • /
    • 제51권2호
    • /
    • pp.267-288
    • /
    • 2014
  • We propose and analyze two-scale product approximation for semilinear heat equations in the mixed finite element method. In order to efficiently resolve nonlinear algebraic equations resulting from the mixed method for semilinear parabolic problems, we treat the nonlinear terms using some interpolation operator and exploit a two-scale grid algorithm. With this scheme, the nonlinear problem is reduced to a linear problem on a fine scale mesh without losing overall accuracy of the final system. We derive optimal order $L^{\infty}((0, T];L^2({\Omega}))$-error estimates for the relevant variables. Numerical results are presented to support the theory developed in this paper.

혼합모드 균열의 응력확대계수 해석과 정도 개선에 대한 고찰 (Determination of S.I.F. for Mixed Mode Crack and Development of Accuracy)

  • 배원호
    • 한국산업융합학회 논문집
    • /
    • 제7권4호
    • /
    • pp.355-361
    • /
    • 2004
  • The finite element method were used to determine the stress intensity factor of cracked plate. The stress method, displacement method and J Integral are most popular finte element method. ANSYS proposed another a kind of displacement method. In this paper, it was examined that the accuracy and utility of the ANSYS method could believable to determine the stress intensity factors of centered inclined crack. Generally, inclined crack has two portion of stress intensity factors, tensile mode F1 and shear mode F2. For the purpose of increasing the accuracy of stress intensity factors, examined the effect of the numbers of nodes and elements, crack tip element size and number of partition of the crack tip vicinity. It was found that the method proposed by ANSYS is useful and has high accuracy. Accuracy of calculated stress intensity factors was increased by increase of the number of nodes and elements, and at the small size of crack tip elements can get more highly accuracy.

  • PDF

유선상류 유한요소법을 이용한 유동장의 해석 (An Analysis of Fluid Flow Using the Streamline Upwinding Finite Element Method)

  • 최형권;유정열
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.624-634
    • /
    • 1994
  • A numerical method which combines equal-order velocity-pressure formulation originated from SIMPLE algorithm and streamline upwinding method has been developed. To verify the proposed numerical method, we considered the lid-driven cavity flow and backward facing step flow. The trend of convergence history is stable up to the error criterion beyond which the maximum value of error is oscillatory due4 to the round-off error. In the present study, all results were obtained with the single precision calculation up to the given error criterion and it was found to be sufficient for our purpose. The present results were then compared with existing experimental results using laser doppler velocimetry and numerical results using finite difference method and mixed interpolation finite element method. It has been shown that the present method gives accurate results with less memories and execution time than the coventional finite element method.

장애물 접촉문제에서의 지역 A Posteriori 오차계산 (Local A Posteriori Error Estimates for Obstacle Contact Problems)

  • 이춘열
    • 한국정밀공학회지
    • /
    • 제15권5호
    • /
    • pp.120-127
    • /
    • 1998
  • Differential inequalities occurring in problems of obstacle contact problems are recast into variational inequalities and analyzed by finite element methods. A new a posteriori error estimator, which is essential in adaptive finite element method, is introduced to capture the errors in finite element approximations of these variational inequalities. In order to construct a posteriori error estimates, saddle point problems are introduced using Lagrange parameters and upper bounds are provided. The global upper bound is localized by a special mixed formulation, which leads to upper bounds of the element errors. A numerical experiment is performed on an obstacle contact problem to check the effectivity index both in a local and a global sense.

  • PDF

New higher-order triangular shell finite elements based on the partition of unity

  • Jun, Hyungmin
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.1-16
    • /
    • 2020
  • Finite elements based on the partition of unity (PU) approximation have powerful capabilities for p-adaptivity and solutions with high smoothness without remeshing of the domain. Recently, the PU approximation was successfully applied to the three-node shell finite element, properly eliminating transverse shear locking and showing excellent convergence properties and solution accuracy. However, the enrichment with the PU approximation results in a significant increase in the number of degrees of freedom; therefore, it requires greater computational cost, thus making it less suitable for practical engineering. To circumvent this disadvantage, we propose a new strategy to decrease the total number of degrees of freedom in the existing PU-based shell element, without loss of optimal convergence and accuracy. To alleviate the locking phenomenon, we use the method of mixed interpolation of tensorial components and perform convergence studies to show the accuracy and capability of the proposed shell element. The excellent performances of the new shell elements are illustrated in three benchmark problems.

복합소재 적층 구조물에 대한 열-기계적 거동 예측을 위한 개선된 일차전단변형이론의 유한요소 정식화 (Finite Element Formulation Based on Enhanced First-order Shear Deformation Theory for Thermo-mechanical Analysis of Laminated Composite Structures)

  • 김준식;나대현;한장우
    • Composites Research
    • /
    • 제36권2호
    • /
    • pp.117-125
    • /
    • 2023
  • 본 논문에서는 복합소재 적층 구조물의 열-기계적 거동을 효과적으로 예측할 수 있는 8절점 판 요소 기반 전산해석 기법을 제안하고자 한다. 횡방향 수직 변형이 고려된 개선된 일차전단변형이론을 바탕으로 유한요소 정식화를 수행하였으며, 독립적으로 가정되는 변위장 및 응력장 사이의 타당한 수학적 관계식을 도출함으로써 해석 결과의 정확도와 계산 과정의 효율성을 동시에 향상시키고자 하였다. 또한, 횡 방향 변위장의 개선을 통해 횡 방향 수직 변형을 효과적으로 고려함으로써, 복합소재 적층 구조물의 열적 거동 예측 과정에서의 신뢰성을 확보하고자 하였다. 수치 예제로써 열-기계 하중을 받는 2차원 복합소재 적층평판을 고려하였으며, 3차원 탄성해 및 참고문헌에서 활용 가능한 해석 결과와의 비교, 검토를 통해 제안된 유한요소 해석 기법의 성능을 검증하였다.

Spline/NURBS 자유곡면과 쉘 해석의 연동 (The Linkage between Spline/NURBS Free Surface and Shell Finite Element Analysis)

  • 노희열;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.303-310
    • /
    • 2001
  • We propose the framework which directly links shell finite element to the free form surface geometric modeling. For the development of a robust shell element, a first order shear deformable shell theory and partial mixed variational functional are provided. Bubble functions are included in the shape function of displacement to improve the performance of the developed element. The Spline/NURBS is used to generate the general free form of parameterized shell surfaces. The proposed shell finite element model linked with NURBS surface representation provides efficiency for design and analysis. Numerical examples are given in order to assess the accuracy of the performances of the proposed element.

  • PDF

ERROR ESTIMATES OF RT1 MIXED METHODS FOR DISTRIBUTED OPTIMAL CONTROL PROBLEMS

  • Hou, Tianliang
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.139-156
    • /
    • 2014
  • In this paper, we investigate the error estimates of a quadratic elliptic control problem with pointwise control constraints. The state and the co-state variables are approximated by the order k = 1 Raviart-Thomas mixed finite element and the control variable is discretized by piecewise linear but discontinuous functions. Approximations of order $h^{\frac{3}{2}}$ in the $L^2$-norm and order h in the $L^{\infty}$-norm for the control variable are proved.