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ERROR ESTIMATES OF RT1 MIXED METHODS FOR

DISTRIBUTED OPTIMAL CONTROL PROBLEMS

Tianliang Hou

Abstract. In this paper, we investigate the error estimates of a qua-
dratic elliptic control problem with pointwise control constraints. The
state and the co-state variables are approximated by the order k = 1
Raviart-Thomas mixed finite element and the control variable is dis-
cretized by piecewise linear but discontinuous functions. Approximations

of order h
3
2 in the L2-norm and order h in the L∞-norm for the control

variable are proved.

1. Introduction

In the recent years, the finite element approximation plays an important
role in the numerical treatment of optimal control problems. This approach
has been extensively studied in [9, 16]. In particular, a priori error estimates of
finite element approximations for optimal control problems governed by linear
elliptic equations were established in, for example, [1, 12, 13], superconvergence
and a posteriori error estimates have been discussed in e.g., [2, 6, 14, 17, 19, 20].
Note that all the above works aimed at standard finite element method.

For the mixed finite element approximations of optimal control problems,
Chen et al. have done some works on priori error estimates and supercon-
vergence properties of mixed finite elements for optimal control problems, see
[4, 5, 7, 8]. Recently, in [22], Xing and Chen have analyzed the L∞-error
estimates for general convex optimal control problems with the lowest order
Raviart-Thomas mixed finite element methods, while the L∞-error estimates
for quadratic optimal control problems governed by semilinear elliptic equations
was investigated in [18].

In this paper, the state and the co-state variables are approximated by order
k = 1 Raviart-Thomas mixed finite element spaces and the control is approxi-
mated by piecewise linear but discontinuous functions. We derive the L2- and
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L∞-error estimates for the control variable. We consider the following linear-
quadratic optimal control problems for the state variables p, y, and the control
u involving pointwise control constraints:

(1.1) min
u∈Uad

{

1

2
‖p− pd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2

}

subject to the state equation

(1.2) −div(A(x)grady) + a0y = f + u, x ∈ Ω,

which can be written in the form of the first order system

(1.3) divp+ a0y = f + u, p = −A(x)grady, x ∈ Ω,

and the boundary condition

(1.4) y = 0, x ∈ ∂Ω,

where Ω is a bounded domain in R
2. Uad denotes the admissible set of the

control variable, defined by

(1.5) Uad = {u ∈ L2(Ω) : a ≤ u ≤ b, a.e. in Ω},

where a and b are two real numbers that fulfill a < b. Moreover, we assume
that 0 ≤ a0 ∈ W 1,∞(Ω), f, yd and pd are given functions. ν is a fixed positive
number. The coefficient A(x) = (aij(x)) is a symmetric matrix function with
aij(x) ∈ W 1,∞(Ω), which satisfies the ellipticity condition

c∗|ξ|
2 ≤

2
∑

i,j=1

aij(x)ξiξj , ∀ (ξ, x) ∈ R
2 × Ω̄, c∗ > 0.

The plan of this paper is as follows. In Section 2, we construct the mixed
finite element approximation scheme for the optimal control problem (1.1)-
(1.4) and give its equivalent optimality conditions. The main results of this
paper are stated in Section 3, we first derive the L2-error estimates for the
optimal control problems, then we consider the L∞-error estimates for the
control variable. In Section 4, we present a numerical example to demonstrate
our theoretical results. In the last section, we briefly summarize the results
obtained and some possible future extensions.

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces
on Ω with a norm ‖ · ‖m,p given by ‖v‖pm,p =

∑

|α|≤m ‖Dαv‖p
Lp(Ω), a semi-

norm | · |m,p given by |v|pm,p =
∑

|α|=m ‖Dαv‖p
Lp(Ω). We set Wm,p

0 (Ω) = {v ∈

Wm,p(Ω) : v|∂Ω = 0}. For p = 2, we denote Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) =

Wm,2
0 (Ω), and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ = ‖ · ‖0,2. In addition C or c denotes a

general positive constant independent of h, where h is the spatial mesh-size for
the control and state discretization.
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2. Mixed methods for optimal control problems

In this section we shall construct mixed finite element approximation scheme
of the control problem (1.1)-(1.4). For sake of simplicity, we assume that the
domain Ω is a convex polygon. Now, we introduce the co-state elliptic equation

(2.1) −div(A(x)(gradz + p− pd)) + a0z = y − yd, x ∈ Ω,

which can be written in the form of the first order system

(2.2) divq + a0z = y − yd, q = −A(x)(gradz + p− pd), x ∈ Ω,

and the boundary condition

(2.3) z = 0, x ∈ ∂Ω.

Next, we recall a result from Grisvard [10].

Lemma 2.1 ([10]). For every p (2 ≤ p < pΩ) and every function ψ ∈ Lp(Ω),
the solution φ of

(2.4) −div(Agradφ) + a0φ = ψ in Ω, φ|∂Ω = 0,

belongs to H1
0 (Ω) ∩ W 2,p(Ω), where the constant pΩ > 2 depending on the

biggest interior angle of Ω and A. Moreover, there exists a positive constant

C, independent of a0 such that

(2.5) ‖φ‖W 2,p(Ω) ≤ C‖ψ‖Lp(Ω).

Due to the above lemma, we know that the state equation and the adjoint
equation admit unique solution in H1

0 (Ω) ∩W 2,p(Ω), if f, u, yd ∈ Lp(Ω) and
pd ∈ (W 1,p(Ω))2.

Let

(2.6) V = H(div; Ω) =
{

v ∈ (L2(Ω))2, divv ∈ L2(Ω)
}

, W = L2(Ω).

We recast (1.1)-(1.4) as the following weak form: find (p, y, u) ∈ V ×W×Uad

such that

min
u∈Uad

{

1

2
‖p− pd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2

}

,(2.7)

(A−1p,v)− (y, divv) = 0, ∀ v ∈ V ,(2.8)

(divp, w) + (a0y, w) = (f + u,w), ∀ w ∈W.(2.9)

It follows from [16] that the optimal control problem (2.7)-(2.9) has a unique
solution (p, y, u), and that a triplet (p, y, u) is the solution of (2.7)-(2.9) if and
only if there is a co-state (q, z) ∈ V ×W such that (p, y, q, z, u) satisfies the
following optimality conditions:

(A−1p,v)− (y, divv) = 0, ∀ v ∈ V ,(2.10)

(divp, w) + (a0y, w) = (f + u,w), ∀ w ∈ W,(2.11)

(A−1q,v)− (z, divv) = −(p− pd,v), ∀ v ∈ V ,(2.12)

(divq, w) + (a0z, w) = (y − yd, w), ∀ w ∈ W,(2.13)
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(νu + z, ũ− u) ≥ 0, ∀ ũ ∈ Uad,(2.14)

where (·, ·) is the inner product of L2(Ω).
Introducing the projection

(2.15) Π[a,b](f(x)) = max{a,min(b, f(x))},

the optimal condition (2.14) can be expressed as follows:

(2.16) u(x) = Π[a,b]

(

−
1

ν
z(x)

)

.

Let Th denote a regular triangulation of the polygonal domain Ω, hT denotes
the diameter of T and h = max hT . Let V h ×Wh ⊂ V ×W denotes the order
k = 1 Raviart-Thomas mixed finite element space [11, 21], namely,

∀ T ∈ Th, V (T ) = P 1(T )⊕ span(xP1(T )), W (T ) = P1(T ),

where P1(T ) denote polynomials of total degree at most 1, P 1(T ) = (P1(T ))
2,

x = (x1, x2), which is treated as a vector, and

V h := {vh ∈ V : ∀ T ∈ Th,vh|T ∈ V (T )},(2.17)

Wh := {wh ∈ W : ∀ T ∈ Th, wh|T ∈ W (T )},(2.18)

Uh := {ũh ∈ Uad : ∀ T ∈ Th, ũh|T ∈W (T )}.(2.19)

Before the mixed finite element scheme is given, we introduce two operators.
Firstly, we define the standard L2(Ω)-projection [11] Ph : W → Wh, which
satisfies: for any φ ∈ W

(Phφ− φ,wh) = 0, ∀ wh ∈Wh,(2.20)

‖φ− Phφ‖0,ρ ≤ Chr‖φ‖r,ρ, 1 ≤ ρ ≤ ∞, ∀ φ ∈ W r,ρ(Ω), r = 1, 2.(2.21)

Next, recall the Fortin projection (see [3] and [11]) Πh : V → V h, which
satisfies: for any q ∈ V

(div(Πhq − q), wh) = 0, ∀ wh ∈ Wh,(2.22)

‖q −Πhq‖ ≤ Chr‖q‖r, ∀ q ∈ (Hr(Ω))2, r = 1, 2,(2.23)

‖div(q −Πhq)‖ ≤ Chr‖divq‖r, ∀ divq ∈ Hr(Ω), r = 1, 2.(2.24)

We have the commuting diagram property

(2.25) div ◦Πh = Ph ◦ div : V →Wh and div(I −Πh)V ⊥Wh,

where and after, I denote identity matrix.
Then the mixed finite element discretization of (2.7)-(2.9) is as follows: find

(ph, yh, uh) ∈ V h ×Wh × Uh such that

min
uh∈Uh

{

1

2
‖ph − pd‖

2 +
1

2
‖yh − yd‖

2 +
ν

2
‖uh‖

2

}

,(2.26)

(A−1ph,vh)− (yh, divvh) = 0, ∀ vh ∈ V h,(2.27)

(divph, wh) + (a0yh, wh) = (f + uh, wh), ∀ wh ∈Wh.(2.28)
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The optimal control problem (2.26)-(2.28) again has a unique solution (ph, yh,
uh), and that a triplet (ph, yh, uh) is the solution of (2.26)-(2.28) if and only
if there is a co-state (qh, zh) ∈ V h ×Wh such that (ph, yh, qh, zh, uh) satisfies
the following optimality conditions:

(A−1ph,vh)− (yh, divvh) = 0, ∀ vh ∈ V h,(2.29)

(divph, wh) + (a0yh, wh) = (f + uh, wh), ∀ wh ∈Wh,(2.30)

(A−1qh,vh)− (zh, divvh) = −(ph − pd,vh), ∀ vh ∈ V h,(2.31)

(divqh, wh) + (a0zh, wh) = (yh − yd, wh), ∀ wh ∈Wh,(2.32)

(νuh + zh, ũh − uh) ≥ 0, ∀ ũh ∈ Uh.(2.33)

In the rest of the paper, we shall use some intermediate variables. For any
control function ũ ∈ Uad, we first define the state solution (p(ũ), y(ũ), q(ũ),
z(ũ)) ∈ (V ×W )2 associated with ũ that satisfies

(A−1p(ũ),v)− (y(ũ), divv) = 0, ∀ v ∈ V ,(2.34)

(divp(ũ), w) + (a0y(ũ), w) = (f + ũ, w), ∀ w ∈W,(2.35)

(A−1q(ũ),v)− (z(ũ), divv) = −(p(ũ)− pd,v), ∀ v ∈ V ,(2.36)

(divq(ũ), w) + (a0z(ũ), w) = (y(ũ)− yd, w), ∀ w ∈W.(2.37)

Then, we define the discrete state solution (ph(ũ), yh(ũ), qh(ũ), zh(ũ)) ∈
(V h ×Wh)

2 associated with ũ that satisfies

(A−1ph(ũ),vh)− (yh(ũ), divvh) = 0, ∀ vh ∈ V h,(2.38)

(divph(ũ), wh) + (a0yh(ũ), wh) = (f + ũ, wh), ∀ wh ∈ Wh,(2.39)

(A−1qh(ũ),vh)− (zh(ũ), divvh) = −(ph(ũ)− pd,vh), ∀ vh ∈ V h,(2.40)

(divqh(ũ), wh) + (a0zh(ũ), wh) = (yh(ũ)− yd, wh), ∀wh ∈Wh.(2.41)

Thus, as we defined, the exact solution and its approximation can be written
in the following way:

(p, y, q, z) = (p(u), y(u), q(u), z(u)),

(ph, yh, qh, zh) = (ph(uh), yh(uh), qh(uh), zh(uh)).

3. L∞-error estimates

In this section, we will give a detailed L∞-error analysis. Firstly, by use of
the duality argument, we can easily get the following result.

Lemma 3.1. For any ũ ∈ Uad, let (p(ũ), y(ũ), q(ũ), z(ũ)) ∈ (V ×W )2 be the

solution of (2.34)-(2.37) and (ph(ũ), yh(ũ), qh(ũ), zh(ũ)) ∈ (V h ×Wh)
2 be the

solution of (2.38)-(2.41), respectively. If the intermediate solution satisfies

p(ũ), q(ũ) ∈ (H1(Ω))2,

then we have

‖y(ũ)− yh(ũ)‖ ≤ Ch2,(3.1)
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‖z(ũ)− zh(ũ)‖ ≤ Ch2.(3.2)

By using the stability result of mixed finite element methods [3], we have
the following results.

Lemma 3.2. Let (ph(u), yh(u), qh(u), zh(u)) ∈ (V h×Wh)
2 and (ph, yh, qh, zh)

∈ (V h × Wh)
2 be the solutions of (2.34)-(2.37) with ũ = u and ũ = uh,

respectively. Then we have

‖yh(u)− yh‖+ ‖ph(u)− ph‖ ≤ C‖u− uh‖,(3.3)

‖zh(u)− zh‖+ ‖qh(u)− qh‖ ≤ C‖u− uh‖.(3.4)

Let

Ω+ =
{

⋃

T : T ⊂ Ω, a < u(x)|T < b
}

,

Ω0 =
{

⋃

T : T ⊂ Ω, u(x)|T ≡ a, or u(x)|T ≡ b
}

,

Ωb = Ω \(Ω+ ∪ Ω0).

It is easy to check that the three parts do not intersect on each other, and
Ω = Ω+ ∪ Ω0 ∪ Ωb. In this paper we assume that u and Th are regular such
that meas(Ωb) ≤ Ch (see [19]).

Theorem 3.1. Let (p, y, q, z, u) ∈ (V ×W )2 × U and (ph, yh, qh, zh, uh) ∈
(V h ×Wh)

2 × Uh be the solutions of (2.6)-(2.10) and (2.18)-(2.22). Assume

that u ∈ W 1,∞(Ω) and u ∈ H2(Ω+). Then we have

‖u− uh‖ ≤ Ch
3
2 ,(3.5)

‖y − yh‖ ≤ Ch
3
2 ,(3.6)

‖z − zh‖ ≤ Ch
3
2 .(3.7)

Proof. First, let uI ∈Wh be the standard lagrange interpolation of u such that
uI(p) = u(p) for all vertices p. Then it is easy to see that uI ∈ Uh. Note that
u ∈W 1,∞(Ω) and u ∈ H2(Ω+). We have

(3.8) ‖u− uI‖0,Ω+ ≤ Ch2‖u‖2,Ω+ , ‖u− uI‖0,∞,Ωb ≤ Ch‖u‖1,∞,Ωb ,

and hence,

‖u− uI‖
2 =

∫

Ω

(u − uI)
2(3.9)

=

∫

Ω+

(u− uI)
2 +

∫

Ω0

(u− uI)
2 +

∫

Ωb

(u− uI)
2

≤ Ch4‖u‖22,Ω+ + 0 + Ch2‖u‖21,∞,Ωbmeas(Ωb)

≤ Ch4‖u‖22,Ω+ + Ch3‖u‖21,∞,Ωb

≤ Ch3(‖u‖22,Ω+ + ‖u‖21,∞) ≤ Ch3.
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By taking ũ = uh in (2.14) and ũh = uI in (2.33) we have that

(3.10) (νu+ z, uh − u) ≥ 0

and

(3.11) (νuh + zh, uI − uh) ≥ 0.

Note that uI − uh = uI − u+ u− uh in (3.11) and add the inequalities (3.10)
and (3.11), we have

(3.12) (νuh + zh − νu− z, u− uh) + (νuh + zh, uI − u) ≥ 0.

By using (3.12), we have

ν‖u− uh‖
2 = (νu − νuh, u− uh)(3.13)

≤ (zh − z, u− uh) + (νuh + zh, uI − u)

= (zh − zh(u), u− uh) + (zh(u)− z, u− uh)

+ (νuh − νu, uI − u) + (zh − zh(u), uI − u)

+ (zh(u)− z, uI − u) + (νu + z, uI − u).

Now, we estimate all terms on the right side of (3.13). From (2.38)-(2.41) , we
derive the following error equations

(A−1(ph(u)− ph),vh)− (yh(u)− yh, divvh) = 0, ∀ vh ∈ V h,(3.14)

(div(ph(u)− ph), wh) + (a0(yh(u)− yh), wh)(3.15)

=(u− uh, wh), ∀ wh ∈Wh,

(A−1(qh(u)− qh),vh)− (zh(u)− zh, divvh)(3.16)

=− (ph(u)− ph,vh), ∀ vh∈V h,

(div(qh(u)− qh), wh) + (a0(zh(u)− zh, wh)(3.17)

=(yh(u)− yh, wh), ∀wh ∈Wh.

Set vh = qh(u)− qh in (3.14), wh = zh(u) − zh in (3.15), vh = ph(u) − ph in
(3.16) and wh = yh(u)− yh in (3.17), respectively. It is easy to see that

(3.18) (zh − zh(u), u− uh) = −‖yh(u)− yh‖
2 − ‖ph(u)− ph‖

2 ≤ 0.

It follows from Lemma 3.1 that

(3.19) (zh(u)− z, u− uh) ≤ C‖zh(u)− z‖ · ‖u− uh‖ ≤ Ch2‖u− uh‖.

By Lemma 3.1, Lemma 3.2, the Cauchy inequality and the approximation
property (3.9) of the interpolation uI , we get

(νuh − νu, uI − u) ≤ C‖uh − u‖ · ‖uI − u‖ ≤ Ch
3
2 ‖u− uh‖,(3.20)

(zh − zh(u), uI − u) ≤ C‖zh − zh(u)‖ · ‖uI − u‖ ≤ Ch
3
2 ‖u− uh‖(3.21)
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and

(3.22) (zh(u)− z, uI − u) ≤ C‖zh(u)− z‖ · ‖u− uI‖ ≤ Ch
7
2 .

Moreover, it follows from (2.14) that νu + z = 0 on Ω+. It is easy to see that
u − uI = 0 on Ω0. Note that for all element T b ⊂ Ωb, there is x0 ∈ T b such
that a < u(x0) < b, and hence (νu + z)(x0) = 0. Then

‖νu+ z‖0,∞,T b = ‖νu+ z − (νu + z)(x0)‖0,∞,T b ≤ Ch‖νu+ z‖1,∞,T b.

Thus

(νu+ z, uI − u) =

∫

Ω+

(νu+ z)(uI − u) +

∫

Ω0

(νu+ z)(uI − u)(3.23)

+

∫

Ωb

(νu + z)(uI − u)

= 0 + 0 +

∫

Ωb

(νu+ z)(uI − u)

≤ ‖νu+ z‖0,∞,Ωb‖uI − u‖0,∞,Ωbmeas(Ωb)

≤ Ch2‖νu+ z‖1,∞,Ωb‖u‖1,∞,Ωbmeas(Ωb)

≤ Ch3.

Substituting the estimates (3.18)-(3.23) in (3.13), we derive the result (3.5).
By use of Lemmas 3.1-3.2 and (3.5), we obtain

‖y − yh‖ ≤ ‖y − yh(u)‖ + ‖yh(u)− yh‖ ≤ C‖u− uh‖+ Ch2 ≤ Ch
3
2 ,(3.24)

‖z − zh‖ ≤ ‖z − zh(u)‖ + ‖zh(u)− zh‖ ≤ C‖u− uh‖+ Ch2 ≤ Ch
3
2 .(3.25)

Thus the estimates (3.6)-(3.7) are proved. �

Lemma 3.3. Assume that all the conditions in Theorem 3.1 are valid. Let

(y, z) be the solution of (2.10)-(2.14) and (yh, zh) be the solution of (2.29)-
(2.33), respectively. Then we have

(3.26) ‖y − yh‖0,∞ + ‖z − zh‖0,∞ ≤ ch,

where c is a positive constant.

Proof. Using (2.21) and Lemma 3.1, we can derive

(3.27) ‖Phy(uh)− yh‖+ ‖Phz(uh)− zh‖ ≤ Ch2.

From equations (1.2) and (2.1), we have the following error equations

(3.28) −div(Agrad(y − y(uh))) + a0(y − y(uh)) = u− uh

and

− div(Agrad(z − z(uh))) + a0(z − z(uh))(3.29)

= − div(A2grad(y − y(uh))) + y − y(uh).
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Using (2.5), Theorem 3.1 and the classical imbedding theorem, we have

‖y − y(uh)‖0,∞ = ‖y − y(uh)‖C(Ω̄)(3.30)

≤ C‖y − y(uh)‖2

≤ C‖u− uh‖

≤ Ch
3
2

and

‖z − z(uh)‖0,∞ = ‖z − z(uh)‖C(Ω̄)(3.31)

≤ C‖z − z(uh)‖2

≤ C(‖div(A2grad(y − y(uh)))‖+ ‖y − y(uh)‖)

≤ C‖y − y(uh)‖2

≤ C‖u− uh‖

≤ Ch
3
2 .

Thus, by (2.21), (3.27), (3.30), (3.31) and the inverse estimate, we have

‖y − yh‖0,∞ + ‖z − zh‖0,∞(3.32)

≤ ‖y − y(uh)‖0,∞ + ‖z − z(uh)‖0,∞

+ ‖y(uh)− Phy(uh)‖0,∞ + ‖z(uh)− Phz(uh)‖0,∞

+ ‖Phy(uh)− yh‖0,∞ + ‖Phz(uh)− zh‖0,∞

≤ Ch
3
2 + Ch(‖y(uh)‖1,∞ + ‖z(uh)‖1,∞)

+ Ch−1(‖Phy(uh)− yh‖+ ‖Phz(uh)− zh‖)

≤ ch.

We complete the proof. �

Next, we introduce a new notation for piecewise linear functions. Let Ej be
an arbitrary vertex of a triangle Ti. Then, we define a linear function ẽi,j on
Ti by

(3.33) ẽi,j(Ek) = δjk,

where δjk is the Kronecker symbol and Ek is a vertex of Ti. Next, we introduce
our basis function

eij = −

{

ẽi,j on Ti,

0 else.

Thus, we can represent the functions uh and zh by

(3.34) uh(x) =
∑

Ti

3
∑

j=1

uijeij(x)
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and

(3.35) zh(x) =
∑

Ti

3
∑

j=1

zijeij(x),

where uij = limx→Ej ,x∈Ti
uh(x) and zij = limx→Ej ,x∈Ti

zh(x).
Let Ti be an arbitrary triangle and Ej an arbitrary vertex. We denote the

set of all vertices of Ti excepted Ej by Ni(Ej).

Lemma 3.4. For every triangle Ti and every indices k, j with Ek ∈ Ni(Ej) it
holds

(3.36)
1

ν
|zij − zik| ≤ Dh

with

D =
L+ 2c

ν
,

where L denotes the Lipschitz constant of z.

Proof. Because of Lemma 2.1, z belongs toW 2,p(Ω) for a certain p > 2. There-
fore z is Lipschitz continuous and we have

(3.37) |z(Ej)− z(Ek)| ≤ Lh.

Combining this inequality with (3.26), we obtain

|zij − zik| ≤ |zij − z(Ej)|+ |z(Ej)− z(Ek)|+ |z(Ek)− zik|(3.38)

≤ ch+ Lh+ ch.

Dividing by ν, we obtain (3.36). �

Lemma 3.5. For a fixed triangle Ti and arbitrary basis functions eij , eik (j 6=
k), we have

(3.39) (eij , eij) = 2(eij , eik).

Proof. The element mass matrix of the reference element Tr is given by

Mr = ((eij , eik))j,k=1,2,3 =
1

24







2 1 1

1 2 1

1 1 2






.(3.40)

Clearly, the entries of this matrix have the desired property. The mass matrix
of an arbitrary triangle Ts is given by

(3.41) Ms =
|Ts|

|Tr|
Mr.

Multiplication with a scalar factor preserves this property. �
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In order to derive the L∞-error estimates for the control variable, we need
to analysis the following quantity

(3.42) M := max
ij

∣

∣

∣

∣

uij −Π[a,b]

(

−
1

ν
zij

)∣

∣

∣

∣

.

In all what follows, the index ij denotes a fixed vertex Ej and a corresponding
triangle Ti where this maximum is attained.

Equation (3.42) means that one of the following two cases occurs

(I) M = uij −Π[a,b]

(

−
1

ν
zij

)

,(3.43)

(II) M = −

(

uij −Π[a,b]

(

−
1

ν
zij

))

.(3.44)

Lemma 3.6. Assume that M > 0. Then, the control ũh = uh − εeij is

admissible in the case (3.43) and ũh = uh + εeij is admissible in the case

(3.44) for a sufficiently small ε > 0. Moreover, the following inequalities hold

true.

M = uij −Π[a,b]

(

−
1

ν
zij

)

≤ uij +
1

ν
zij in the case (I),(3.45)

M = −

(

uij −Π[a,b]

(

−
1

ν
zij

))

≤ −

(

uij +
1

ν
zij

)

in the case (II).(3.46)

Proof. We discuss only case (I), the case (II) can be obtained similarly. Since
M is positive, using the fact that a ≤ Π[a,b]

(

1
ν
zij
)

≤ b, we conclude that

(3.47) uij > Π[a,b]

(

−
1

ν
zij

)

≥ a.

Consequently, there exists a ε > 0 such that

(3.48) uij − ε > a.

From (3.48), we can see that the control ũh = uh−εeij is admissible. Again by
use of M > 0 and uij ∈ [a, b] we have Π[a,b]

(

− 1
ν
zij
)

≤ b. Therefore, we have

Π[a,b]

(

− 1
ν
zij
)

≥ − 1
ν
zij and consequently

(3.49) M = uij −Π[a,b]

(

−
1

ν
zij

)

≤ uij +
1

ν
zij ,

which implies (3.45). �

Lemma 3.7. Let ũh = uh − εeml and vh = uh + εers be admissible for certain

indices l,m, r, s and ε > 0. Then the following inequalities hold true.

uml +
1

ν
zml ≤ −

1

2

∑

Ek∈Nm(El)

(

umk +
1

ν
zmk

)

,(3.50)

urs +
1

ν
zrs ≥ −

1

2

∑

Ek∈Nr(Es)

(

urk +
1

ν
zrk

)

.(3.51)
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Proof. We discuss only (3.50), (3.51) can be obtained similarly. Taking ũh =
uh − εeml in (2.33), we arrive at

(3.52) (νuh + zh,−εeml) ≥ 0.

Furthermore, (3.52) can be written as

(3.53) (νuml + zml)(eml, eml) ≤ −
∑

Ek∈Nm(El)

(νumk + zmk)(eml, emk).

Using (3.39), we find

(3.54) (νuml + zml)(eml, eml) ≤ −
1

2
(eml, eml)

∑

Ek∈Nm(El)

(νumk + zmk).

Division by (eml, eml) yields (3.50). �

Lemma 3.8. Let M > 0 and ij be an index where the maximum in (3.42) is
attained. Then there exists an index m with Em ∈ Ni(Ej) such that

Π[a,b]

(

−
1

ν
zim

)

≤ −
1

ν
zim in the case (I),(3.55)

Π[a,b]

(

−
1

ν
zim

)

≥ −
1

ν
zim in the case (II).(3.56)

Proof. We discuss only (3.55), (3.56) can be obtained similarly. The discussion
of (3.55) can be splitted in two partial cases:
Case I. There exist an index l with El ∈ Ni(Ej) such that

(3.57) νuil + zil > 0.

We can apply (3.50) for the index ij, since ũh = uh−εeij is admissible (Lemma
3.6). Then, we can increase the right-hand side of (3.50) by omitting the term
−(νuil + zil)

(3.58) (νuij + zij) < −
1

2

∑

Ek∈Ni(Ej),Ek 6=El

(νuik + zik).

From (3.58), it is easy to see that

(3.59) (νuij + zij) < − max
Ek∈Ni(Ej)

(νuik + zik).

We denote an index, where this maximum is attained by m

(3.60) −(νuim + zim) = − max
Ek∈Ni(Ej)

(νuik + zik).

From (3.60) and (3.49), we find that

(3.61) M = uij −Π[a,b]

(

−
1

ν
zij

)

≤ uij +
1

ν
zij < −

(

uim +
1

ν
zim

)

.
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By definition of M , we have

(3.62) −

(

uim −Π[a,b]

(

−
1

ν
zim

))

≤M.

Hence, we derive

(3.63) Π[a,b]

(

−
1

ν
zim

)

≤ −
1

ν
zim.

Case II. For all indices l with El ∈ Ni(Ej) we have

(3.64) νuil + zil ≤ 0.

Using (3.50), we find that

(3.65) (νuij + zij) ≤ −
3

2
max

Ek∈Ni(Ej)
(νuik + zik).

Again, we denote an index, where this maximum is attained by m

(3.66) −(νuim + zim) = − max
Ek∈Ni(Ej)

(νuik + zik).

Next, we will show that uim = b. We assuming uim < b, the control ũh =
uh + εeim is admissible for sufficiently small ε. Thus, we can apply (3.51) for
the index im

(3.67) −

(

uim +
1

ν
zim

)

≤
1

2

∑

Ek∈Ni(Em)

(

uik +
1

ν
zik

)

.

It follows from (3.64) and (3.67) that

(3.68) −

(

uim +
1

ν
zim

)

≤
1

2

(

uij +
1

ν
zij

)

.

By (3.65), (3.66) and (3.68), we get

(3.69) uij +
1

ν
zij ≤

3

4

(

uij +
1

ν
zij

)

or uij +
1
ν
zij ≤ 0. This is a contradiction to (3.49) and M > 0. Consequently,

we have uim = b. Using the inequalities M > 0, (3.49) and (3.65), we know
that

(3.70) 0 < M ≤ −(νuim + zim) = −(νb+ zim),

which yields to

(3.71) b < −
1

ν
zim.

Thus, we complete the proof. �

Lemma 3.9. Assume that Dh < b− a, then we have the following estimate

(3.72) M = max
ij

∣

∣

∣

∣

uij −Π[a,b]

(

−
1

ν
zij

)∣

∣

∣

∣

< Dh.
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Proof. For M = 0, (3.72) is obvious. Let us assume M > 0. Again, we discuss
only the Case (I). From (3.55), we have

(3.73) b = Π[a,b]

(

−
1

ν
zim

)

< −
1

ν
zim.

From (3.73) and (3.36), we get

(3.74) −
1

ν
zij > b−Dh.

By assumption Dh < b− a and (3.74), we find that

(3.75) −
1

ν
zij > a.

From (I)

(3.76) uij −Π[a,b]

(

−
1

ν
zij

)

=M > 0

and uij ≤ b we obtain

(3.77) Π[a,b]

(

−
1

ν
zij

)

< b.

It follows from (3.75) and (3.77) that

(3.78) −
1

ν
zij = Π[a,b]

(

−
1

ν
zij

)

,

which implies

(3.79) uij +
1

ν
zij = uij −Π[a,b]

(

−
1

ν
zij

)

=M.

By use of uij ≤ b and 1
ν
zij < −(b−Dh), we find that

(3.80) uij +
1

ν
zij < b− (b−Dh) = Dh.

Thus, (3.72) can be proved by (3.79) and (3.80). �

Now, we can prove the L∞-error estimate for the control variable.

Theorem 3.2. Let u be the solution of (2.10)-(2.14) and uh be the solution of

(2.29)-(2.33), respectively. Assume that all the conditions in previous Lemmas

and Theorem are valid. Then, we have

(3.81) ‖u− uh‖0,∞ ≤ Ch,

where C = D + (c+ L)/ν.
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Proof. Because of uh ∈ [a, b], it is easy to see that (3.81) holds for Dh ≥ b− a.
Now we consider the case Dh < b − a. First, we derive a estimate for the grid
points. From Lemma 3.9, we have

(3.82) max
ij

∣

∣

∣

∣

uij −Π[a,b]

(

−
1

ν
zij

)∣

∣

∣

∣

< Dh.

From Lemma 3.3 and the Lipschitz continuity of projection operator we get

(3.83) max
ij

∣

∣

∣

∣

Π[a,b]

(

−
1

ν
z(Ej)

)

−Π[a,b]

(

−
1

ν
zij

)∣

∣

∣

∣

<
c

ν
h.

From (2.14), we have

(3.84) u(Ej) = Π[a,b]

(

−
1

ν
z(Ej)

)

.

Combining (3.82)-(3.84) with the triangle inequality, we derive

(3.85) max
ij

|uij − u(Ej)| <
(

D +
c

ν

)

h.

Second, for a non grid point x ∈ Ti we find a convex linear combination of
the vertices Ej of the corresponding triangle

(3.86) x =
∑

Ej∈Ti

λjEj ,
∑

Ej∈Ti

λj = 1.

Since uh is linear on Ti, we have

|uh(x)− u(x)| =

∣

∣

∣

∣

∣

∣

∑

Ej∈Ti

λjuij − u(x)

∣

∣

∣

∣

∣

∣

(3.87)

≤
∑

Ej∈Ti

λj |uij − u(Ej)|+
∑

Ej∈Ti

λj |u(Ej)− u(x)|

≤
(

D +
c

ν

)

h+
∑

Ej∈Ti

λj |u(Ej)− u(x)|

≤
(

D +
c

ν

)

h+
L

ν
h.

In the last inequality we used that u is Lipschitz continuous with constant L/ν.
By (3.85) and (3.87), we complete the proof. �

4. Numerical experiments

In this section, we present below an example to illustrate the theoretical
results. The optimization problems were solved numerically by projected gra-
dient methods, with codes developed based on AFEPack [15]. The discretiza-
tion was already described in Section 2: the control function u was discretized
by piecewise linear but discontinuous functions, whereas the state (y,p) and
the co-state (z, q) were approximated by the order k = 1 Raviart-Thomas
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mixed finite element functions. In the following example, we choose the do-
main Ω = [0, 1]× [0, 1], ν = 1, A = I and a0 = 0.

Example. We consider the following two-dimensional elliptic optimal control
problem

(4.1) min
u∈Uad

{

1

2
‖p− pd‖

2 +
1

2
‖y − yd‖

2 +
1

2
‖u‖2

}

subject to the state equation

(4.2) divp = f + u, p = −grady,

where

y = 2 sin(πx1) sin(πx2),

z = − sin(πx1) sin(πx2),

u = max{a,min(b,−z)},

f = 2π2y − u,

yd = y − 2π2z,(4.3)

p = pd = −

(

2π cos(πx1) sin(πx2)

2π sin(πx1) cos(πx2)

)

,

q =

(

π cos(πx1) sin(πx2)

π sin(πx1) cos(πx2)

)

.

In the numerical implementation, we set a = 0.2 and b = 0.8 to make both
the lower and the upper constraints active. In Table 1, the errors ‖u−uh‖ and
‖u − uh‖0,∞ obtained on a sequence of uniformly refined meshes are shown.
Table 1 also shows the convergence orders of these errors. In Figure 1, the
profile of the numerical solution of u on the 64 × 64 mesh grid is plotted. It
is easy to see that the numerical results are consistent with our theoretical
analysis.

Table 1. The error of Example on a sequential uniform refined meshes.

h ‖u− uh‖ order ‖u− uh‖0,∞ order
1/16 6.43573e-03 − 3.39841e-02 −
1/32 2.65667e-03 1.28 2.07512e-02 0.71
1/64 9.58166e-04 1.47 1.14939e-02 0.85
1/128 3.60974e-04 1.41 5.89509e-03 0.96

5. Conclusions

In this paper, we discussed the order k = 1 Raviart-Thomas mixed finite ele-
ment methods for the elliptic optimal control problem (1.1)-(1.4) with pointwise
control constraints. We have used piecewise linear but discontinuous functions
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instead of piecewise constant functions to approximate the control variable.
We have derived L2- and L∞-error estimates for the control variable. In the
future, we will investigate the L∞-error estimates and superconvergence of op-
timal control problems governed by nonlinear elliptic equations. Furthermore,
we shall consider the case that a and b in the admissible control set Uad are
some smooth functions (not constants as the present paper, see (1.5)).

0
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0.6
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1

0
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Figure 1. The profile of the numerical solution of the Example on 64× 64
triangle mesh.
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[1] N. Arada, E. Casas, and F. Tröltzsch, Error estimates for the numerical approximation

of a semilinear elliptic control problem, Comput. Optim. Appl. 23 (2002), no. 2, 201–
229.

[2] R. Becker, H. Kapp, and R. Rannacher, Adaptive finite element methods for optimal con-

trol of partial differential equations: basic concept, SIAM J. Control Optim. 39 (2000),
no. 1, 113–132.

[3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag,
New York, 1991.

[4] Y. Chen, Superconvergence of mixed finite element methods for optimal control problems,
Math. Comp. 77 (2008), no. 263, 1269–1291.

[5] , Superconvergence of quadratic optimal control problems by triangular mixed

finite elements, Internat. J. Numer. Methods Engrg. 75 (2008), no. 8, 881–898.
[6] Y. Chen and Y. Dai, Superconvergence for optimal control problems governed by semi-

linear elliptic equations, J. Sci. Comput. 39 (2009), no. 2, 206–221.
[7] Y. Chen, Y. Huang, W. B. Liu, and N. Yan, Error estimates and superconvergence of

mixed finite element methods for convex optimal control problems, J. Sci. Comput. 42
(2009), no. 3, 382–403.



156 T. HOU

[8] Y. Chen and W. B. Liu, A posteriori error estimates for mixed finite element solutions

of convex optimal control problems, J. Comp. Appl. Math. 211 (2008), no. 1, 76–89.
[9] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Ams-

terdam, 1978.
[10] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston-London-

Melbourne, 1985.
[11] J. Douglas and J. E. Roberts, Global estimates for mixed methods for second order

elliptic equations, Math. Comp. 44 (1985), no. 169, 39–52.
[12] F. S. Falk, Approximation of a class of optimal control problems with order of conver-

gence estimates, J. Math. Anal. Appl. 44 (1973), 28–47.
[13] T. Geveci, On the approximation of the solution of an optimal control problem governed

by an elliptic equation, RAIRO. Anal. Numér. 13 (1979), no. 4, 313–328.
[14] R. Li, W. B. Liu, H. P. Ma, and T. Tang, Adaptive finite element approximation for

distributed elliptic optimal control problems, SIAM J. Control Optim. 41 (2002), no. 5,
1321–1349.

[15] R. Li and W. Liu, http://circus.math.pku.edu.cn/AFEPack.
[16] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,

Springer-Verlag, Berlin, 1971.
[17] W. B. Liu and N. N. Yan, A posteriori error analysis for convex distributed optimal

control problems, Adv. Comp. Math. 15 (2001), 285–309.
[18] Z. Lu and Y. Chen, L∞-error estimates of triangular mixed finite element methods for

optimal control problems governed by semilinear elliptic equations, Numer. Anal. Appl.
2 (2009), no. 1, 74–86.
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