• Title/Summary/Keyword: Mixed Finite Element

Search Result 317, Processing Time 0.023 seconds

Densification Behavior of Mixed Metal Powders under High Temperature (혼합 금속 분말의 고온 치밀화 거동)

  • Jo, Jin-Ho;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.735-742
    • /
    • 2000
  • Densification behaviors of mixed metal powder under high temperature were investigated. Experimental data of mixed copper and tool steel powder with various volume fractions of Cu powder were obtained under hot isostatic pressing and hot pressing. By mixing the creep potentials of McMeeking and co-workers and of Abouaf and co-workers originally for pure powder, the mixed creep potentials with various volume fractions of Cu powder were employed in the constitutive models. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densification of mixed powder under hot isostatic pressing and hot pressing. Finite element calculations by using the creep potentials of Abouaf and co-workers agreed reasonably well with experimental data, however, those by McMeeking and co-workers underestimate experimental data as observed in the case of pure metal powders.

A Densification Model for Mixed Metal Powder under Cold Coompaction (냉간압축하에서 혼합금속분말의 치밀화 모델)

  • 조진호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.112-118
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms of volume fractions and contact numbers of Cu powder new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densificatiojn of mixed powder under cold isostatic pressing and cold die compaction. finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

MIXED FINITE VOLUME METHOD ON NON-STAGGERED GRIDS FOR THE SIGNORINI PROBLEM

  • Kim, Kwang-Yeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.4
    • /
    • pp.249-260
    • /
    • 2008
  • In this work we propose a mixed finite volume method for the Signorini problem which are based on the idea of Keller's finite volume box method. The triangulation may consist of both triangles and quadrilaterals. We choose the first-order nonconforming space for the scalar approximation and the lowest-order Raviart-Thomas vector space for the vector approximation. It will be shown that our mixed finite volume method is equivalent to the standard nonconforming finite element method for the scalar variable with a slightly modified right-hand side, which are crucially used in a priori error analysis.

  • PDF

Dynamic analysis of helicoidal bars with non-circular cross-sections via mixed FEM

  • Eratli, Nihal;Yilmaz, Murat;Darilmaz, Kutlu;Omurtag, Mehmet H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.221-238
    • /
    • 2016
  • One of the objectives of this study is to implement the direct calculation of the torsional moment of inertia for non-circular cross-sections, which is based on the St. Venant torsion formulation and the finite element method. Recently the proposed method provides a unique calculation of the torsional rigidity of simply and multiply connected cross-sections. Next, free vibration analyses of cylindrical and non-cylindrical helices with non-circular cross-sections are solved by a curved two-nodded mixed finite element based on the Timoshenko beam theory. Some thin-thick closed or open sections are handled and the natural frequencies of cylindrical and non-cylindrical helices are compared with the literature and the commercial finite element program SAP2000.

A NONCONFORMING PRIMAL MIXED FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS

  • Cho, Sungmin;Park, Eun-Jae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1655-1668
    • /
    • 2014
  • In this article, we propose and analyze a new nonconforming primal mixed finite element method for the stationary Stokes equations. The approximation is based on the pseudostress-velocity formulation. The incompressibility condition is used to eliminate the pressure variable in terms of trace-free pseudostress. The pressure is then computed from a simple post-processing technique. Unique solvability and optimal convergence are proved. Numerical examples are given to illustrate the performance of the method.

A MIXED FINITE ELEMENT METHOD FOR NAVIER-STOKES EQUATIONS

  • Elakkad, Abdeslam;Elkhalfi, Ahmed;Guessous, Najib
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1331-1345
    • /
    • 2010
  • This paper describes a numerical solution of Navier-Stokes equations. It includes algorithms for discretization by finite element methods and a posteriori error estimation of the computed solutions. In order to evaluate the performance of the method, the numerical results are compared with some previously published works or with others coming from commercial code like ADINA system.

The Mixed Finite Element Analysis for Saturated Porous Media using FETI Method

  • Lee, Kyung-Jae;Tak, Moon-Ho;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.693-702
    • /
    • 2010
  • In this paper, FETI(Finite Element Tearing and Interconnecting) method is introduced in order to improve numerical efficiency of Staggered method. The porous media theory, the Staggered method and the FETI method are briefly introduced in this paper. In addition, we account for the MPI(Message Passing Interface) library for parallel analysis, and the proposed combined Staggered method with FETI method. Finally Lagrange multipliers and CG(Conjugate Gradient) algorithm to solve decomposed domain are proposed, and then the proposed method is verified to be numerically efficient by MPI library.

Finite element method for porous media using equal order element (동차선형요소를 사용한 다공질 매체의 커플링 유한요소해석)

  • Park, Tae-Hyo;Tak, Moon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.20-25
    • /
    • 2008
  • The finite element analysis for porous media is severe job because constituents have different physical peoperties, and element's continuity and stability should be considered. Thus, we propose the new mixed finite element method in order to overcome the problems. In this method, multi time step, remeshing step, and sub iteration step are introduced. The multi time step and remeshing step make it possible to satisfy a stability and an accuracy during sub iteration in which global time is determined. Finally, the proposed method is compared with the ABAQUS(2007) software and exact solution(Schiffman 1967) through two dimensional consolidation model.

  • PDF

Analysis of RC walls with a mixed formulation frame finite element

  • Saritas, Afsin;Filippou, Filip C.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.519-536
    • /
    • 2013
  • This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic damage model is implemented to describe the hysteretic behavior of concrete. Comparisons with available experimental data on RC structural walls confirm the accuracy of proposed method.

The Mixed Finite Element Analysis for Porous Media using Domain Decomposition Method (영역 분할기법을 이용한 포화 다공질매체의 혼합유한요소해석)

  • Lee, Kyung-Jae;Tak, Moon-Ho;Kang, Yoon-Sik;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • The mixed finite element analysis is the most widely used method for saturated porous media. Generally, in this method, direct method and iterative method are proposed to obtain unknown variable, however, the iterative method is recommended because the method provide numerical stability and accuracy under the material properties for solid and fluid are different. In this paper, we introduce staggered method which has strong numerical stability, and FETI(Finite Element Tearing and Interconnecting) which is one of decomposition methods are applied into the method in order to obtain numerical efficiency. In which, Lagrange Multipliers and conjugated gradient method to solve decomposed domain are proposed, and then, the proposed method is verified numerical efficiency by point to point MPI(Message Passing Interface) library.