• 제목/요약/키워드: Mixed Fiber

검색결과 769건 처리시간 0.022초

인공지반녹화 하부 누름콘크리트에 혼입되는 합성 매크로 섬유의 비율별 휨 성능 검토 (Flexural Strength Testing of Topping Concrete base of Artificial Greening Layer based on Synthetic Macro Fiber Mixture Ratio)

  • 한윤정;이정훈;송제영;장덕배;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.38-39
    • /
    • 2015
  • For the purpose of reducing defects (cracking) in topping concretes cast as artificial greening layer base, synthetic macro fibers were mixed. The flexural strength of synthetic macro fiber mixed topping concretes was tested via comparing its performance with current topping concrete. According to the results of the testing, topping concrete with adjusted mixing ratio after mixing with 1kg of synthetic macro fiber showed approximately 15% higher flexural strength compared to the current topping concrete.

  • PDF

폴리우레아 방수재의 탄소섬유함량에 따른 내열성능 변화추이 연구 (A Study on the Thermal Performance change due to amount of Carbon Fiber in Poly-Urea Waterproofing Material)

  • 박완구;박진상;최수영;김동범;김병일;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.126-127
    • /
    • 2017
  • This study investigates the effect of improving the heat resistance performance when carbon fiber is mixed in the polyurea coating material. A tensile strength test method was carried out with the carbon fiber mixed polyurea specimens at an interval of 7, 14, and 21 days after heat treatment at 140±2℃. The test results showed that there was a significant decrease in the tensile strength performance. While the elongation and tensile performance decreased greatly, it was confirmed nevertheless the overall performance was maintained. This study proposes that mixing carbon fiber to the polyurea resin can effectively secure long-term heat resistance, thereby solving the problem of deterioration of physical properties caused by exposure to ultraviolet rays.

  • PDF

CFRP 복합재료의 혼합모드 I/II 층간파괴인성치에 관한 연구 (A Study on Mixed Mode I/II Interlaminar Fracture Toughness of Carbon Fiber Reinforced Plastic Composites)

  • 김형진;박명일;김재동;고성위
    • 동력기계공학회지
    • /
    • 제4권3호
    • /
    • pp.48-54
    • /
    • 2000
  • This paper describes the effect of molding pressure, specimen geometries for Mixed Mode I/II interlaminar fracture toughness of carbon fiber reinforced plastic composites by using asymmetrical double cantilever beam(ADCB) specimen. The value of $G_{I/IIC}$ as a function of various molding pressure is almost same at 307, 431, 585 kPa. However it shows the highest value under 307 kPa molding pressure. The effect of $G_{I/IIC}$ due to the change of initial crack length of ADCB specimen was almost negligible in this study. It turns out that the condition for mix mode quasi-static crack growth in ADCB specimen is the ratio of the crack length to that of the specimen, i.e., ${\alpha}/L<0.4$.

  • PDF

PET 섬유의 캐리어 염색에 관한 연구 (A study on the Carrier Dyeing for PET Fiber)

  • 송경헌;이문수;이래연
    • 자연과학논문집
    • /
    • 제9권1호
    • /
    • pp.169-175
    • /
    • 1997
  • 효과적인 캐리어로 알려진 벤질알콜, 벤즈알데히드, 아세트 페놀을 사용하여 PET섬유를 분산염료로 염색함에 있어 캐리어 종류에 따른 염색성 특히 혼합용매의 효과를 평가하고 아울러 일광견뢰도, 세탁견뢰도, 인장강도와 같은 염색후의 물성변화에 대해 연구 검토하였다. 실험결과 벤즈알데히드와 아세트페놀의 혼합용매에서 가장 우수한 염색성을 보였으며 효과적인 캐리어 작용은 일광견뢰도 및 인장강도와 같은 물성을 크게 떨어뜨리는 결과를 가져왔다.

  • PDF

한지 슬러시-목재 섬유 또는 목재 파티클 복합재의 인장강도 (Tensile Strength of Composites from Hanji(Korean paper) Sludge Mixed with Wood Fiber or Pariticle)

  • 이필우;손정일;이영규
    • 한국가구학회지
    • /
    • 제10권1호
    • /
    • pp.51-56
    • /
    • 1999
  • This research was carried out to investigate the Hanji sludge(black color)-wood fiber and wood particle composited applied by waste sludges arising from the making process of Hanji (Korea paper). In experimental design, four levels of the mixed ratio of Hanji sludge to wood fiber or wood particle(10:90, 20:80, 30:70 and 40:60), three kinds of the resin(PMDI, urea and phenol resin)and three kinds of the specific gravity(0.6, 0.75 and 0.9) were designed to determine the tensile strength of Hanji sludge-wood fiber and wood particle composites. From the results and discussion, it may be concluded as follows: In Hanji sludge-wood fiber and wood particle composites, tensile strengths showed decreasing tendency absolutely by increasing Hanji sludge additive, but clearly increase with the increase of specific gravity. In Hanji sludge-wood fiber composites, there were no differences between PMDI and urea resin-bonded composites, but phenol resin-boned composites were made possibly until the addition of 30% Hanji sludge. On the other hand, Hnji sludge-wood particle composites(SpGr=0.6) have very low tensile strength values. But they were made favorably until the addition of 20% Hanji sludge in Hanji sludge-wood particle composites(SpGr=0.9).

  • PDF

하이브리드섬유보강 프리캐스트 콘크리트의 보강섬유 종류에 따른 역학적 특성 및 충격저항성 (Mechanical Properties and Impact Resistance of Hybrid Fiber Reinforced Concrete with Type of Reinforcing Fibers for Precast Concrete)

  • 오리온;박찬기
    • 한국농공학회논문집
    • /
    • 제55권4호
    • /
    • pp.29-35
    • /
    • 2013
  • The objective of the current study is to evaluate the effects depending on the types of reinforcing fibers being influential in view of mechanical properties and impact resistance of hybrid fiber reinforced concrete (HFRC) for applications to precast concrete structure. Hybrid fibers applied therefor were three types such as PP/MSF (polypropylene fiber+macro synthetic fiber), PVA/MAF (polyvinyl alcohol fiber+MSF) and JUTE/MSF (natural jute fiber+MSF), where the volume fraction of PP, PVA and natural jute was applied with 0.2 %, respectively, while based on 0.05 % volume fraction of MSF. The HFRC was tested for slump, compressive strength, flexural strength and impact resistance. The test result demonstrated that mixture of such hybrid fibers improve compressive strength, flexural strength and impact resistance of concrete. Moreover, it was found that HFRCs to which hydrophilic fibers, i.e. PVA/MSF and JUTE/MSF, were mixed show more improved features that HFRC to which non-hydrophilic fiber, i.e. PP/MSF was mixed. Meanwhile, the finding that PVA/MSF HFRC exhibited better performance than JUTE/MSF HFRC was attributed from the former having higher aspect ratio than that of the latter.

세포 함유 젤라틴 파이버 응용을 통한 골 재생 유도용 인산칼슘 생체재료 세포 탑재 연구 (Cell-laden Gelatin Fiber Contained Calcium Phosphate Biomaterials as a Stem Cell Delivery Vehicle for Bone Repair)

  • 김선화;황창모;박상혁
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권1호
    • /
    • pp.61-70
    • /
    • 2022
  • Natural and synthetic forms of calcium phosphate cement (CPC) have been widely used in bone repair and augmentation. The major challenge of injectable CPC is to deliver the cells without cell death in order to regenerate new bone. The study objective was to investigate for the potential of stem cell-laden gelatin fibers containing injectable, nanocrystalline CPC to function as a delivery system. Gelatin noddle fiber method was developed to delivered cells into nCPC. Experimental groups were prepared by mixing cells with nCPC, mixing cell-laden gelatin fibers with nCPC and mixing cell-laden gelatin fibers containing BMP-2 with nCPC. Media diffusion test was conducted after dissolving the gelatin fibers. SEM examined the generated channels and delivered cell morphology. Fibers mixed with nCPC showed physical setting and hardening within 20 min after injection and showed good shape maintenances. The gelatin fibers mixed nCPC group had several vacant channels generated from the dissolved gelatin. Particularly, proliferation and attachment of the cells were observed inside of the channels. While live cells were not observed in the cell mixed nCPC group, cells delivered with the gelatin fibers into the nCPC showed good viability and increased DNA content with culture. Cell-laden gelatin fiber was a novel method for cell delivery into nCPC without cell damages. Results also indicated the osteogenic differentiation of gelatin fiber delivered cells. We suggest that the cell-laden gelatin fibers mixed with nCPC can be used as an injectable cell delivery vehicle and the addition of BMP-2 to enhances osteogenesis.

섬유혼입 고강도 콘크리트의 열전달 및 역학적 거동 해석모델에 대한 연구 (Study on The Heat Transfer and Mechanical Modeling of Fiber-Mixed High Strength Concrete)

  • 신영섭;한동석;염광수;전현규
    • 한국방재학회 논문집
    • /
    • 제11권2호
    • /
    • pp.45-52
    • /
    • 2011
  • 고강도 콘크리트의 폭렬현상을 억제하여 내화 성능을 개선하기 위한 방법으로 고온에서 수증기가 콘크리트 표면으로 이동할 수 있도록 경로를 제공하여 주는 섬유를 혼입하는 방안이 있다. 본 연구에서는 섬유혼입 고강도 콘크리트 기둥에 대한 재하 내화 실험을 수행하였고, 내부 철근의 온도분포 예측을 위한 열전달 모델과 고온에서 콘크리트 기둥의 역학적 거동에 대한 재료모델을 제시하였다. 화재 시 콘크리트 내부의 물리적인 현상과 콘크리트의 열적 특성을 고려하여 선행 연구의 재료모델을 수정하였다. 수정한 모델을 이용한 섬유혼입 고강도 콘크리트의 유한요소 해석을 실행하였고, 재하 내화실험과의 비교를 통하여 재료모델을 제안하였다.

강섬유를 혼입한 고강도 콘크리트 보의 탄소섬유쉬트 보강에 관한 연구 (A Study on Carbon Fiber Sheet Rehabilitation of High Strength Reinforced Concrete Beams Mixed Steel Fibrous)

  • 곽계환;곽경헌;정태영;고성재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.491-496
    • /
    • 2001
  • In recent years, the research and development about the new material proceed rapidly and actively in the building industry. As building structures become bigger, higher and more specialized, so does the demand for material with higher strength. In the future, we will need to research repair and rehabilitation to make high strength concrete mixed steel fibrous building safe. The carbon fiber reinforced plastic bonding method is widely used in reinforcing the existing concrete structure among the various methods. The repair of initiate loaded reinforced high-strength concrete beams mixed steel fibrous with epoxy bonded Carbon Fiber Sheets(CFS) was investigated experimentally. The CFS thickness and length were varied to assess the peel failure at the curtailment of CFS, The behaviour of the repaired beams was represented by load-longitudinal steel strain relation and failure modes were discussed. The test results indicate that CFS is very effective for strengthening the demand beams and controlling deflections of reinforced high strength concrete beams mixed steel fibrous happen diagonal crack, the increase in the number of CFS layers over two layers didn't effect the increase in the strength of beams.

  • PDF

NUTRITIONAL EVALUATION OF MAIZE FODDER AT TWO DIFFERENT VEGETATIVE STAGES

  • Azim, A.;Naseer, Z.;Ali, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제2권1호
    • /
    • pp.27-34
    • /
    • 1989
  • Different fractions of maize plant and whole mixed fodder were analysed for their chemical composition and dry matter digestibility (DMD). Highest crude protein (CP) values were found in leaves as compared to the other portions. Younger plants contained more CP as compared to the matured ones. The crude fiber (CF) content of various fractions of the plant ranged between 19.12 to 35.60% with maximum values in the bottom portion of the stem. Matured plants contained more CF. The analysis of cell wall constituents indicated that the maximum values for neutral detergent fiber (NDF) were found in the bottom portion and in the whole mixed plant. The highest levels of acid detergent fiber (ADF) were observed in bottom fraction followed by whole mixed plant, whereas the other plant fractions did not show any differences. Variation in acid detergent lignin (ADL) values existed in different fractions of the plant and the lowest were in the top portion of the stem. Although there existed a variation in the mineral composition of different fractions of the plants, the results were non significant. Maximum DMD was found in leaves followed by the whole mixed plant, middle and bottom portion of the stem. The values of DMD were higher in younger plants as compared to the matured ones. It may be concluded that younger plants and the upper portion of the plants have a higher nutritive value as compared to the matured plants and lower portion of the plants.