Browse > Article
http://dx.doi.org/10.9798/KOSHAM.2011.11.2.045

Study on The Heat Transfer and Mechanical Modeling of Fiber-Mixed High Strength Concrete  

Shin, Young-Sub (연세대학교 토목환경공학과)
Han, Tong-Seok (연세대학교 토목환경공학과)
Youm, Kwang-Soo ((주)GS건설 기술연구소)
Jeon, Hyun-Kyu ((주)GS건설 기술연구소)
Publication Information
Journal of the Korean Society of Hazard Mitigation / v.11, no.2, 2011 , pp. 45-52 More about this Journal
Abstract
To improve fire-resistance of a high strength concrete against spalling under elevated temperature, fibers can be mixed to provide flow paths of evaporated water to the surface of concrete when heated. In this study, the experiment of a column under fire and mechanical loads is conducted and the material model for predicting temperature of reinforcement steel bar and mechanical behavior of fiber-mixed high strength concrete is suggested. The material model in previous studies is modified by incorporating physical behavior of internal concrete and thermal characteristics of concrete at the elevated temperature. Thermo-mechanical analysis of the fiber-mixed high strength concrete column is conducted using the calibrated material model. The performance of the proposed material model is confirmed by comparing thermo-mechanical analysis results with the experiment of a column under fire and mechanical loads.
Keywords
Fire-resistance; Explosive spalling; Fiber-mixed high strength concrete; Temperature distribution; Thermo-mechanical behavior; Constitutive model;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Nishida, A., Ymazaki, N., Inoue, H., Schneider, U., Diederichs, U., (1995) Study on the properties of high-strength concrete with short polypropylene fibre for spalling resistance, Proceedings of international conference on concrete under severe conditions. CONSEC'95, Vol.2, Sapporo, Japan, pp. 1141-50.
2 Tayfun, U. and Toplu, I.B. (2009) Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature, Construction and Building Materials, Vol. 23, No. 9, pp. 3063-3069.   DOI   ScienceOn
3 Lie, T.T., Irwin, R.J. (1995) Fire Resistance of Rectangular Steel Columns Filled with Bar-Reinforced Concrete, Journal of Structural Engineering ASCE, Vol. 121, No. 5, pp. 797-805.   DOI   ScienceOn
4 Liu, X., Ye, G., Schutter, G.D., Yuan, Y. and Taerwe, L. (2008) On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste, Cement and Concrete Research, Vol. 38, No. 4, pp. 487-499.   DOI   ScienceOn
5 MIDAS Information and Technology (2005) MIDAS FEA : User's Manual. MIDASIT: Seoul, Korea.
6 Gere JM. and Timoshenko SP. (1999) Mechanics of Materials. 4th SI edition. Cheltenham, UK: Stanley Thornes (Publisher). pp. 739-786.
7 Holman J.P. (2010) HEAT TRANSFER. 10th edition, McGraw-Hill, pp. 1-24.
8 ISO (1975) Fire Resistance Tests-Elements of Building Construction, ISO 834-1975, International Organization for Standardization.
9 Kodur, V.K.R., Wang, T.C. and Cheng, F.P. (2004) Predicting the fire resistance behaviour of high strength concrete columns, Cement and Concrete Composites, Vol. 26, No. 2, pp. 141-153.   DOI   ScienceOn
10 Eurocode 3, Design of steel structures, ENV 1993-1-2, 1994.
11 Engel, Y.A. (2004) Heat Transfer : A Practical Approach. Brief Edition, McGraw-Hill, pp. 389-415.
12 Atkinson. T., (2004) Polypropylene fibers control explosive spalling in high-performance concrete, Concrete, Vol. 38, No. 10, pp. 69-70.
13 Cheng, F.P., Kodur, V.K.R. and Wang, T.C. (2004) Stress-strain curves for high strength concrete at elevated temperature, Journal of Materials in Civil Engineering ASCE, Vol. 16, No. 1, pp. 84-90.   DOI   ScienceOn
14 Chung, J.H. and Consolazio, G.R. (2005) Numerical modeling of transport phenomena in reinforced concrete exposed to elevated temperatures, Cement and Concrete Research, Vol. 35, No. 3, pp. 597-608.   DOI   ScienceOn
15 한국콘크리트학회 (2004b) 최신 콘크리트 공학, 한국콘크리트학회.
16 한국건축학회 (2008) 고강도 콘크리트 구조내화 설계, 한국건축학회.
17 한국콘크리트학회 (2003) 콘크리트 구조설계 기준, 한국콘크리트학회.
18 한국콘크리트학회 (2004a) 철근콘크리트 구조물의 내화특성, 한국콘크리트학회.
19 한국표준협회 (1999) KS F 2257-1, 4, 5, 6, 7 건축구조부재의 내화시험방법, 한국표준협회.
20 신영섭, 한동석, 염광수, 전현규 (2011) 섬유혼입 내화 고강도 콘크리트의 열전달 모델, 전산구조공학회, 게재 예정.
21 염광수, 전현규, 김흥열 (2009a) 섬유혼입공법을 적용한 고강도 콘크리트 기둥의 비재하 내화시험, 한국콘크리트학회논문집, 한국콘크리트학회, 제21권, 제4호, pp. 467-473.
22 염광수, 전현규, 김흥열 (2009b) 섬유혼입공법을 적용한 고강도 콘크리트 기둥의 재하 내화시험, 한국콘크리트학회논문집, 한국콘크리트학회, 제21권, 제4호, pp. 473-480.
23 김흥열, 김형준, 전현규, 염광수 (2010) 표준화재 재하조건 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 전열 특성 및 화재 거동에 관한 연구, 한국콘크리트학회논문집, 한국콘크리트학회, 제22권, 제1호, pp. 29-39.