• Title/Summary/Keyword: Mixed Degree Finite Elements

Search Result 6, Processing Time 0.03 seconds

A Study on the Use of Hierarchical Elements (계층 요소 사용에 대한 연구)

  • Kim, J.W.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.68-73
    • /
    • 2000
  • A mixed degree finite element solutions using hierarchical elements are investigated for convergences on a 2-D simple cases. Elements are generated block by block and each block is assigned an arbitrary solution degree. The numerical study showed that a well constructed blocks can increase the convergence and accuracy of finite element solutions. Also, it has been found that for higher order elements, the convergence trends can be deteriorated for smaller mesh sizes. A procedure for a variable fixed boundary condition has been included.

  • PDF

An Investigation of the Use of Hierarchical Elements for Incompressible Flow Computations (비압축성 유동계산을 위한 계층 요소 사용의 검토)

  • Kim, Jin-Hwan;Jeong, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1209-1217
    • /
    • 2002
  • The use of a two dimensional hierarchical elements are investigated for the incompressible flow computation. The construction of hierarchical elements are explained by both a geometric configuration and a determination of degrees of freedom. Also a systematic treatment of essential boundary values has been developed for the degrees of freedom corresponding to higher order terms. The numerical study for the poisson problem shows that the computation with hierarchical higher order elements can increase the convergence rate and accuracy of finite element solutions in more efficient manner than the use of standard first order element. for Stokes and Cavity flow cases, a mixed version of penalty function approach has been introduced in connection with the hierarchical elements. Solutions from hierarchical elements showed better resolutions with consistent trends in both mesh shapes and the order of elements.

A Study on the Use of Hierarchical Elements for Incompressible Flow Computations (비압축성 유동계산을 위한 계층 요소 사용에 대한 연구)

  • Kim, Jin-Whan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.422-429
    • /
    • 2001
  • A two dimensional hierarchical elements are investigated for a use on the incompressible flow computation. The construction of hierarchical elements are explained through the tensor product of 1-D hierarchical functions, and a systematic treatment of essential boundary values has been developed for the degrees of freedom corresponding to higher order terms. The numerical study for the poisson problem showed that the present scheme can increase the convergence and accuracy of finite element solutions, and can be more efficient than the standard first order with many elements. Also, for Stokes and cavity flow cases, solutions from hierarchical elements showed better resolutions and future promises for higher order solutions.

  • PDF

A MULTISCALE MORTAR MIXED FINITE ELEMENT METHOD FOR SLIGHTLY COMPRESSIBLE FLOWS IN POROUS MEDIA

  • Kim, Mi-Young;Park, Eun-Jae;Thomas, Sunil G.;Wheeler, Mary F.
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1103-1119
    • /
    • 2007
  • We consider multiscale mortar mixed finite element discretizations for slightly compressible Darcy flows in porous media. This paper is an extension of the formulation introduced by Arbogast et al. for the incompressible problem [2]. In this method, flux continuity is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. Optimal fine scale convergence is obtained by an appropriate choice of mortar grid and polynomial degree of approximation. Parallel numerical simulations on some multiscale benchmark problems are given to show the efficiency and effectiveness of the method.

Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.649-668
    • /
    • 2018
  • In this paper, we present a numerical model for fluid-structure interaction between structure built of porous media and acoustic fluid, which provides both pore pressure inside porous media and hydrodynamic pressures and hydrodynamic forces exerted on the upstream face of the structure in an unified manner and simplifies fluid-structure interaction problems. The first original feature of the proposed model concerns the structure built of saturated porous medium whose response is obtained with coupled discrete beam lattice model, which is based on Voronoi cell representation with cohesive links as linear elastic Timoshenko beam finite elements. The motion of the pore fluid is governed by Darcy's law, and the coupling between the solid phase and the pore fluid is introduced in the model through Biot's porous media theory. The pore pressure field is discretized with CST (Constant Strain Triangle) finite elements, which coincide with Delaunay triangles. By exploiting Hammer quadrature rule for numerical integration on CST elements, and duality property between Voronoi diagram and Delaunay triangulation, the numerical implementation of the coupling results with an additional pore pressure degree of freedom placed at each node of a Timoshenko beam finite element. The second original point of the model concerns the motion of the outside fluid which is modeled with mixed displacement/pressure based formulation. The chosen finite element representations of the structure response and the outside fluid motion ensures for the structure and fluid finite elements to be connected directly at the common nodes at the fluid-structure interface, because they share both the displacement and the pressure degrees of freedom. Numerical simulations presented in this paper show an excellent agreement between the numerically obtained results and the analytical solutions.

A Study on the Selective Use of Higher Order Elements (고차 요소의 선택적 사용에 대한 연구)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.1-9
    • /
    • 1999
  • 일차원 및 이차원의 단순한 문제에 대하여 계층 요소를 사용한 혼합 차수 유한 요소해의 정확성 및 수렴성을 조사하였다. 이러한 작업은 임의의 차수를 가진 블록들을 조합하여 요소를 구성함으로서 이루어질 수 있다. 블록간의 연결성이 유지될 수 있는 블록의 구성과 요소 생성에 대하여는 코드개발과 관련하여 설명하고 있으며, 서로 다른 차수를 가진 인접 블록간의 해의 연속성에 대하여는 계층 요소의 구성과 관련하여 서술되었다. 수치적 결과는 블록의 차수를 잘 선택함으로서 유한 요소해의 수렴성과 정확성을 증가시킬 수 있음을 보여주고 있으며, 고차 요소 영역을 너무 많이 할당하여 선형 요소의 영역이 너무 적을 경우에는 경계 조건에 따라 오차가 내부로 전파됨을 보여준다. 또한 세분화된 요소에 대한 고차 보간의 경우, 해의 수렴성이 저해될 수 있음이 발견되었다.

  • PDF