Browse > Article
http://dx.doi.org/10.4134/JKMS.2007.44.5.1103

A MULTISCALE MORTAR MIXED FINITE ELEMENT METHOD FOR SLIGHTLY COMPRESSIBLE FLOWS IN POROUS MEDIA  

Kim, Mi-Young (Department of Mathematics Inha University)
Park, Eun-Jae (Department of Mathematics Yonsei University)
Thomas, Sunil G. (Institute for Computational Engineering and Sciences the University of Texas at Austin)
Wheeler, Mary F. (Institute for Computational Engineering and Sciences Department of Aerospace Engineering Mechanics and Department of Petroleum and Geosystems Engineering the University of Texas at Austin)
Publication Information
Journal of the Korean Mathematical Society / v.44, no.5, 2007 , pp. 1103-1119 More about this Journal
Abstract
We consider multiscale mortar mixed finite element discretizations for slightly compressible Darcy flows in porous media. This paper is an extension of the formulation introduced by Arbogast et al. for the incompressible problem [2]. In this method, flux continuity is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. Optimal fine scale convergence is obtained by an appropriate choice of mortar grid and polynomial degree of approximation. Parallel numerical simulations on some multiscale benchmark problems are given to show the efficiency and effectiveness of the method.
Keywords
multiscale; mixed finite element; mortar finite element; error estimates; multiblock; non-matching grids;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov, A multiscale mortar mixed finite element method, Technical Report TR-MATH 06-15, Department of Mathematics, University of Pittsburgh, 2006, Submitted to Multiscale Model. Simul
2 J. Douglas, Jr. and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39-52   DOI
3 M. Nakata, A. Weiser, and M. F. Wheeler, Some superconvergence results for mixed finite element methods for elliptic problems on rectangular domains, The mathematics of finite elements and applications, V (Uxbridge, 1984), 367-389, Academic Press, London, 1985
4 V. Kippe, J. E. Aarnes, and K.-A. Lie, Multiscale finite-element methods for elliptic problems in Porous media flow, Multiscale Model. Simul., (2006, to appear)
5 C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach. to domain decomposition: the mortar element method, Nonlinear partial differential equations and their applications. College de France Seminar, Vol. XI (Paris, 1989-1991), 13-51, Pitman Res. Notes Math. Ser., 299, Longman Sci. Tech., Harlow, 1994
6 P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24. Pitman (Advanced Publishing Program), Boston, MA, 1985
7 M.-Y. Kim, F. A. Milner, and E.-J. Park, Some observations on mixed methods for fully nonlinear parabolic problems in divergence form, Appl. Math. Lett. 9 (1996), no. 1, 75-81
8 T. P. Mathew, Domain decomposition and iterative refinement methods for mixed finite element discretizations of elliptic problems, PhD thesis, Courant Institute of Mathematical Sciences, New York University, 1989
9 F. A. Milner and E.-J. Park, A mixed finite element method for a strongly nonlinear second-order elliptic problem, Math. Comp. 64 (1995), no. 211, 973-988   DOI
10 J. C. Nedelec, Mixed finite elements in $R^3$, Numer. Math. 35 (1980), no. 3, 315-341   DOI
11 E.-J. Park, Mixed finite element methods for nonlinear second-order elliptic problems, SIAM J. Numer. Anal. 32 (1995), no. 3, 865-885   DOI   ScienceOn
12 T. Russell and M. F. Wheeler, Finite element and finite difference methods for continuous flows in porous media in The Mathematics of Reservoir Simulation, R. E. Ewing, ed., Frontiers in Applied Mathematics 1, Society for Industrial and Applied Mathematics, Philadelphia, 1984, pp. 35-106
13 M. F. Wheeler and I. Yotov, A posteriori error estimates for the mortar mixed finite element method, SIAM J. Numer. Anal. 43 (2005), no. 3, 1021-1042   DOI   ScienceOn
14 L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190,483-493   DOI
15 A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for elliptic problems, SIAM J. Numer. Anal. 25 (1988), no. 2, 351-375   DOI   ScienceOn
16 M. F. Wheeler, A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723-759   DOI   ScienceOn
17 I. Yotov, Mixed finite element methods for flow in porous media, PhD thesis, Rice University, Houston, Texas, 1996, TR96-09, Dept. Compo Appl, Math., Rice University and TICAM report 96-23, University of Texas at Austin
18 R. E. Ewing, R. D. Lazarov, and J. Wang, Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. Numer. Anal. 28 (1991), no. 4, 1015-1029   DOI   ScienceOn
19 R. Glowinski and M. F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), 144-172, SIAM, Philadelphia, PA,1988
20 E.-J. Park, Mixed finite element methods for generalized Forchheimer flow in porous media, Numer. Methods Partial Differential Equations 21 (2005), no. 2, 213-228   DOI   ScienceOn
21 P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292-315. Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977   DOI
22 J. E. Roberts and J. M. Thomas, Mixed and hybrid methods, Handbook of numerical analysis, Vol. II, 523-639, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991
23 M. A. Christie and M. J. Blunt, Tenth SPE comparative solution project: A comparison of upscaling techniques, SPE Reservoir Eval. Eng. 4 (2001), no. 4, 308-317   DOI
24 T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov, Mixed finite element methods on nonmatching multiblock grids, SIAM J. Numer. Anal. 37 (2000), no. 4, 1295-1315   DOI   ScienceOn
25 F. Brezzi, J. Douglas, Jr., M. Fortin, and L. D. Marini, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Model. Math. Anal. Numer. 21 (1987), no. 4, 581-604
26 F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217-235   DOI
27 F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991
28 Z. Chen and T. Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comp. 72 (2003), no. 242, 541-576   DOI   ScienceOn
29 L. C. Cowsar, J. Mandel, and M. F. Wheeler, Balancing domain decomposition for mixed finite elements, Math. Comp. 64 (1995), no. 211, 989-1015   DOI
30 J. Douglas, Jr., R. E. Ewing, and M. F. Wheeler, The approxuruituni of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numer. 17 (1983), no. 1, 17-33
31 R. Duran, Superconuerqence for rectangular mixed finite elements, Numer. Math. 58 (1990), no. 3, 287-298   DOI
32 J. Bear, Dynamics of Fluids in Porous Media, Dover Publication, Inc. New York, 1988