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1. Introduction

The p-version, in finite element method, is
known to converge faster than the h-version.
However, the implement by the standard
Lagrangian type elements is not easy due to the
complication of element construction.

One way of overcoming this difficulty is to

« ZA3Y, FAYRT AARYA 2 FeAY @S

use the Hierarchical elements, which require, say,
only 9 nodes geometrically in two dimensions.
This means that the element geometry should
not be curved much to meet at most the
quadratic interpolation. However, the solution
degrees can go higher than the quadratic, which
is referred to as a subparametric element. The
efficiency of hierarchical basis functions has
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been cited by Zienkiewicz at eI’ and Robinson®.

In order to generate elements easily, the
considered domain is divided into several
subdomains which are called as a “block”. The
block with an arbitrary solution degree should
have enough information to make globally
consistent numbering for elements and nodes.
Then the solution of an element is constructed
according to the specified degree of the block
which contains the element. Also the elements at
the block interface should be given a special
attention to meet the continuity requirement. For
higher order solutions, elements should have the
required number of nodal points corresponding to
the solution degrees of freedom. But this way
might lose the optimal generation of elements
due to the necessity of too many nodal points
within an element. But using the hierarchical
shape functions, the elemental shape can be
restricted to the quadratic Lagrangian quadrature
or cubical element, and the remaining degrees of
freedom can lie on the edge nodes, the face
nodes or the interior nodes. This geometrical
restriction can simplify the construction of a
higher order element, especially at the block
The term
means quadratic or cubic element.

This study investigate qualities of
obtained from different
degrees. For this, two problems are expected; the

interfaces. "higher order element”
is to
solutions regional
first one is to find a way of connecting
topologically and geometrically quadrature and/or
cubical blocks of various shapes. the second one
is to find a way of solution continuity between
elements adjacent to the interfaces when the
solution degrees of blocks are arbitrary.

Since the solution of elements are interpolated
by the hierarchical the
maximum number of nodes needed in an element
becomes 9(27) in - two(three) dimensions. The
present code makes use of this fact explicitly in

shape functions,

generating a nodal variables and can simplify
code management.

A brief explanation of the code, written by
Visual Basic

systematic way of constructing an elemental

language4), together with a
solution is presented in Ch. 2. In Ch. 3, some
numerical examples in one and two dimensional

cases are considered.

2. Construction of Blocks and
Elemental Solutions

A two dimensional quadrature block consists
of 4 vertices and 4 edges, and a three
dimensional cubical block consists of 8 verteces,
12 edges and 6 faces. Depending on the
curvature of a block, a, user can decide whether
to use a 2nd degree interpolation or a 3rd. One
may use the serendipity shape function to make
the input nodal points minimum.

To define a block and hence to generate
elemental solutions, the present code incorporates
Type variables to define Blocks, Edges, Elements
and Nodes. The type variables for Blocks,
and Nodes
informations defining each type variables. The

Elements consist of necessary
choice of Edge variable is accrued from the
reasoning that for a structured grid, the edge
connection seems more basic than the face
connection. A detailed description can be found
in Ref. (5). .

The input data for blocks are shown in Table
1, and the shape of blocks and the elements
generated are shown in Fig. 1 (a) and (b)
respectively.

Elements of Hierarchical shape functions are
same as Lagrangian element in the linear case,
but they differ in the higher order cases. In
quadratic elements, the geoinetries are same as
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Table 1 Input data example for linear blocks

Block # 1 2 3 4
Type Cube | Cube | Cube | Quad
Block Deg 1 1 1
Npoints 8 8 8 4
Elem. |Geom 1 1 1 1
Deg.  |Soln 1 1 1 1
Dir. 1 4 4 2 2
# of -
Dir. 2 6 3 5 5
Elem.
Dir. 3 4 3 3 1
Dir. 1 1.2 10 10 15
Prog. -
) Dir. 2 0.8 05 10 05
Ratio
Dir. 3 1.0 1.8 10 1.0

(a)
G,
‘

Fig. 1 An Example of block data in table 1 (a)
Blocks (b) Elements

freedom at the edge nodes are not the nodal
values but the 2nd order tangential derivatives.
that for the Lagrangian case but the degrees of
For the N order elements, the element degrees
of freedom are obtained by adding some
necessary dofs to the (N-1)™ order element. In
two dimensional case, one dof is added to each
edge node and the remainings to the interior
node. Followings are hierarchical shape functions

in one dimension®:

hi = 05(1. - 7) : hy = 05(. + 7)
h3 = 05(77°2 - 1)

2.1

Followings are the hierarchical shape functions
by tensor product of Eq.(2.1) for two dimensional
quadratic element:

$1=Thi(n1) hi(72)

¢2=hA71) (72

#3=hxn1) ho72)

¢a="hi(71) h(72)

¢5=-ha(7n) hi(72) (2.2)
$6 = ~ha(21) hs(72)

$7 = -hs(71) ha(72)

¢s = -hi{n1) ha(72)

¢9 = ha7,) ha(72)

The degrees of freedom associated with
element nodal points are shown in Table 2 up to
4th order. In general, the element solution can be
computed by matching nodes and dofs as shown
in Table 2 under the assumption that the
solution degrees of blocks are all same. In the
present study, the degrees of blocks are assumed
different each other, and hence some
consideration is necessary on the elements of
block interfaces, An example of this kind is
shown in Fig. 2. The element with a lower
degree is a transition element and the element
"A” is such an element. In this case, solution
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"A” "B” should be
continuous along the Edge 2 of element "A” and
the Edge 4 of element "B". Hence, the edge
node on the Edge 4 "AY
corresponding degrees of freedom by referring to
Table 2. In the case of Fig. 2, the dof number is
6, and if the degree of element "B” is cubic, then

across the elements and

in should have

the corresponding dofs become 6 and 11.

Usually the number of dof per element node is
what is shown in Table 2. If the number of dof
of one block is different from that of the other
block, the code is arranged for the lower degree
element to accept more edge dofs.

Table 2 Dof numbers of element nodes in two

dimensions
Element Node #
Deg.
11213]4)5]16]7) 8 9
1 1121314
2 5)1617] 8 9
14,15,
3 10]11]121 13 16
21,22,23,
4 1711819 20 1%
C[}A 3]s 7 3
8 X 8
g
1 211 9 2
Elem. = A Elem. =B
Deg. =1 Deg. =2

Fig. 2 An Example of transition element

3. Numerical Experiments

To investigate the quality of the solutions
from blocks with an arbitrary degree, three
simple problems with known exact solutions are

® The first one is a one dimensional

chosen
problemns, the second a heat conduction type two
dimensional problem and the third a Couette flow

problem based on 2-D Stokes equation.

3.1 One dimensional problem

Following equation is considered,

~dwdx® -u+ x> =0, 0< x <1 (3.1
Two kinds of boundary conditions are
considered.

BC@H) : u@ = 0 = u(l)
BC@1): u(@® =0, u'(1) =1

There are 10 sampling points ranging from
x=0.05 to x=0.95. The error norms are plotted in
Fig. 3.

Both the linear and the quadratic base show a
certain expected convergence trends, but the
cubic base does not. Further experiments with 64
elements showed that the quadratic base didn’t
improve the accuracy of solution with errors
remaing at the value of the crossing point
appeared in Fig. 3(a). Hence, the error value at
the crossing point is the minimum for all
method. Moreover, the fact that the cubic base in
this case does not improve the solution after 8
elements, might tell that the mesh refinement
does not mean more accurate solutions for higher
order cases.

From Fig. 3(b), the linear solution shows a
certain expected convergence trends, but both
the quadratic and the cubic solution do not. More
experiments showed that both the quadratic and
the cubic solution with 64 elements didn’t
improve the solution appreciably. A comparison
between the exact and the numerical one shows
that most of errors of the higher order solutions
occurred at the Neumann BC point. In Table 4,
errors are shown for each block for the 16
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elements solution. This shows that the higher
order solutions may not be suitable at the
Neumann boundary points, and the errors seem
to be reflected inside the domain. The errors in
Table 3 and Table 4 are the sum of differences
between the numerical and the exact values at
the sampling points.

To see the effectiveness of using higher order
blocks regionally, 10 numerical tests are made
and the results are shown in Table 5. The tests
have been done with 4 elements for each block.

The test No. 4 shows that the solution by
higher order in the block 4 is worse than those
by all other methods shown in Table 4. This
phenomena is accrued by using higher order
base in the region of Neumann boundary.
Considering the test No. 1, the solution is
expected, in normal sense, better than those of
shown in Table 3, but the test
shows contrary result. The errors of linear

linear solutions

blocks are somewhat lessened but the error of
quadratic block is much amplified. In the test No.
5, the degree of block 1 is 3 and the degrees of
the other blocks are 1. In this case, the error of
block 1 is one order less than that of test No. 1,
and errors in the other regions are, up to the
digits shown, same as those of the test No. 1.

1.00E+00
[—o—Deg. 1 —a—Deg. 2 —a—Deg, 3]
1.00E-01
:5 1.008-02
g 1.00E-03 \
E 1.00E-04 ™~
a \\ _
?1.00}3—05 \
1.00E-06 1— \‘___::>a-
1.00E-07 . . :
8 16 32
Log{Number of Flements)

Fig. 3(a) Error plotting for BC type(i)

1.00E+00
| ——Deg. 1 -#-Deg. 2 -a—Deg. 3 I

;&i 1.00E-01 k\\\
E 1.00E-02
7] \ \
E 1.00E-03 \\:

1.00E-04 T T T

4 8 16 32
Log(Number of Flements)

Fig. 3(b) Error plotting for BC type(ii)

The present results may indicate that for one
dimensional case, the quadratic block is more
sensitive on the error propagation than the other
kind of blocks.

The errors shown in the test No. 8 are almost
as same as those shown in the test No. 10. This
seems that since the exact solution is almost
linear except near neumann boundary, the
solution by the cubic order block is not much
different from the one by the quadratic order
block.

In test No. 7, the first two blocks are quadratic
and the remaings are linear. In this case the total
error is almost same as that of the whole linear
case in Table 3.

Table 3 Sum of errors(differences) in each
block by BC type (ii) for 16 elements

Degree
Block #
1 2 3
1 1.480E-04 | 5967E-04 | 5.952E-04
2 3.985E-04 1.660E~-03 1.660E-03
3 4927TE-04 | 2702E-03 | 2.701E-03
4 4.278E-04 1.850E-02 1.850E-02
Sum 1470E-03 | 2.350E-02 | 2.350E-02
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In test No. 6, middle of two blocks are
quadratic and the blocks near boundaries are
linear. The good
improvement over the whole linear solution.

It has been found that the use of higher
order block -except the neumann boundary region

total error shows a

can increase the overall accuracy of
solution in general and also does not affect
adversely solution quality of neighboring blocks.

Table 4 Sum of errors(differences) in each
block of an arbitrary degree
Block Number
Test 1 9 3 2
1 Deg 2 1 1 1
Err [52E%04| 39E-04 | 49E-04 | 4.2E-04
9 Deg 1 2 1 1
Emr |14E-04} 1.1E-04 | 45E-04 | 3.8E-04
3 Deg 1 1 2 1
Err [1.3E-04| 35E-04 | 14E~-04 | 35E-04
4 Deg 1 1 1 2
Err [72E-04| 20E-03 { 3.1E-03 | 1.9E-02
5 Deg 3 1 1 1
Err [5.1E-05| 39E-04 [ 49E-04 | 4.2E-04
6 Deg 1 2 2 1
Err j12E-04| 64E-05 | 99E-05 | 3.0E-04
7 Deg 2 2 1 1
Emr [41E-04} 1.1E-04 | 45E-04 | 3.9E-04
8 Deg 2 2 2 1
Err |24E-05| 6.3E-05 | 1.0E-04 | 3.1E-04
9 Deg 2 2 3 1
Err |24E-05{ 6.3E-05 | 1.0E-04 | 3.1E-04
10 Deg 3 3 3 1
Err |2.3E-05| 6.3E-05 | 1.0E-04 | 3.1E-04
3.2 Two dimensional problems

Two problems are chosen: the first is a
Poisson type equation and the second a Couette
flow problem on a 2-D Stokes equation solved
by a primitive variable approach.

(A) Poisson equation
Following equation is considered.
_vz u =

1, 0<x<1, 0<y<], (3.2)

where

u
duw/on

0 on sides x=1 and y=1

0 on sides x=0 and y=0

The exact solution of Eq.(32) is found in
Ref(3). The number of sampling points ranging
from (02,0.2) to (0.80.8) are 16. Blocks are
shown in Fig. 4. .Here, three cases are
considered. The first case is for one block, the
second case for two blocks, and the third for
four blocks.

()

Block # 1 Block # 2
(b)
Block # 3 | Black # 4
Block # 1 Block # 2

Fig. 4 Block numbering (a) 2 blocks (b) 4
blocks

(1) Solutions by one block

In Fig. 5 they were plotted on a log-log scale.
From the plot, one can measure the slopes of
each curve with respect to the horizontal line. In
the present case, the slope angle for quadratic
errors is about one and half of that of the linear
one, and the slope angle for cubic is about two
times of the linear one.

(2) Solutions by two blocks

Errors(sum of squares) are plotted in Fig. 6.
The error plots for Deg(2,1) and Deg(3,1) are not
distinguishable. Deg(2,1) means here that the
degree of block 1 is quadratic and the degree of
block 2 is linear. The slope angle for Deg(3,2) is
about two times for that of Deg(2,1) or Deg(3,1)
up to 64 elements, but it becomes almost same
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as those from the others for more elements than
64. With higher order elements in block 1, the
solution is much improved from the pure linear
element case. With higher order elements for all
blocks, the initial slope is almost twice those of
the other case, but as elements are refined, the
convergence rate gets slower. This tells that for
higher there might be a

limitation on mesh refinement.

order elements,

Overall, the use of higher order block improves
the solution as was expected.

(3) Solutions by four blocks

Fig. 7 shows errors for four different kinds of
mixed degrees. The error for Deg(2,1,1,1) and
Deg(3,1,1,1) are almost same and the solution by
Deg(3,2,2,2) converges more rapidly. The solution
by Deg(322,1) is expected to show a similar
behavior to that by Deg(3,2,2,2), but is not. This
may be that if there is a linear block, the overall
convergence is very much dependent on the
fashion inherent to linear elements.

It may be of interest to see how the higher
order block affects neighboring blocks, and for
this, Table 5 was prepared by running with 64
elements, ie, 4 by 4 elements for each "domain”.
Referring to two block method in Table 5, errors
in domain 2 and 4 of both Deg(2,1) and Deg(3,1)
are greater than that of Deg(l) of one block
method. It may be said that,
mixed degrees, there exists an intraboundary

when using

where numerical errors are reflected. Also when
using thé present error norm, it turns out that
the Deg(2,1)
solution, which is .quite contradictory.

solution is worse than Deg(l)

From four blocks case, the behavior of
Deg(2,1,11) solution looks quite ordinary since
this case reduces errors in domain 1 and does
affect the other domains adversely.
Deg(3,1,1,1) solution has similar behavior but is
not improved as expected. Deg(3,2,2,1) solution

not

looks better but actually the sum of errors are

1.00E+00
|+Deg(1) —a—-Deg(2) +Deg(3)]
1.00E-02 \
& 1.00E-04 \
5§ 1.00E-06 \\ .
%1.005—08 \\ \\.
1.00E-10 \/
1.00E-12 . - .
4 18 64 258
Log(Mumber df Flements)
Fig. 5 Error plots for two dimensional poisson
problem
1.00E+01 X
[-+-Deg(z,1) ~a—Deg(3,1) ——Deg(3.2)
__ 1.O0E-01
& 1.008-03 k\\
Eé 1.00E-05 ,\ \
@ 1.00E-07 \
E 1.00E-09 \
1.00E-11 . — :
4 16 64 . 256
Log(Number of Flements)

Fig. 6 Error plots for two block method

1.00E+01
—e—Deg(2,1,1,1) —a—Deg(3,1,1,1_]
- 1.00E-01 —a—Deg(3,2,2,1) —»—Deg(3,2,2,2)
s 1.00E-03 \\\
% oomen IS =
¥ 1.00E-07 \
E 1.00E-09 \
l.OOE_ll T T T
4 16 64 256
Log(Mumber of Elements)

Fig. 7 Error plots for four block method

greater than that of Deg(l) solution. This shows
that errors are accumulated inside the linear
block severely. The solution of Deg(3,222)
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shows a better solution than that of Deg(2). This
solution does not exhibit any error accurmnulation
comparing with the Deg(2) solution. Hence it can
be concluded that when using mixed degree
elements with linear elements, the region of
higher order elements should be small in order
to have enough dofs in linear base block to damp
out errors.

Table 5 Sum of errors(differences) in each

domain for 64 elements

Domain. One Block
Deg(1) Deg(2) Deg(3)
1 3.098E-03 | 2.850E-05 | 4.000E-07
2 4421E-03 | 3.350E-05 | 4.000E-07
3 4421E-03 | 3.350E-05 | 4.000E-07
4 4672E-03 | 5.072E-05 | 2.070E-06
Sum 1.661E-02 | 1.462E-04 | 3.270E-06
Domain. Two Blocks
Deg(2,1) Deg(3,1) Deg(3,2)
1 1.808E-03 | 2.084E-03 9.500E-06
2 1.687E-02 | 1.650E-02 2.817TE-04
3 1.409E-03 1.117E-03 1.280E-05
4 1.339E-02 | 1.442E-02 9.111E-04
Sum 3.348E-02 | 3.412E-02 1.215E-03
Four Blocks
Domain Deg Deg Deg Deg
(211.1) | 3111 | 3221) | (3.222)
1 8.66E-04 | 8.50E-04 |2.22E-05| 1.60E-06
2 4.28E-03 |4.30E-03|3.23E-05{ 3.49E-05
3 4.28E-03 | 4.30E-03|3.22E-05| 3.50E-05
4 476E-03 |4.76E-03 | 3.04E-02| 5.09E-05
Sum 1.42E-02 | 1.42E-02 | 3.05E-02| 1.22E-04

(B) Couette Flow problem on 2-D Stokes
equation
The 2-D Stokes equation is as follows:

-yvia + ap/ax =0
-vViy o+ ap/dy =0 ' (33)
owadx + av/dy 0

The domain of computation is 0<x<2, 0<y=<

6, and the boundary conditions are shown in Fig.
8. The main difficulity of this problem is that the
pressure solution exhibits an hourglass fashion.
To avoid the hourglass phenomena, it is a
standard practice to use one order less
interpolation for the pressure. In the present
study, pressures are computed only at the vertex
dofs, which means that the values on edges and
interior for the pressures are linearly interpolated.
Thus the edge and the interior dofs for the
pressure function become zeros since the
hierarchical functions other than vertices are
related with dofs having second or more
tangential derivatives. Table 6 shows the sum of
squared errors on u,v and p for both quadratic
and cubic base with mesh refined.
With pressure interpolatged by the same order as
for the velocities, the errors in pressure(elem.
number of 2 by 6 and 4 by 12) are order of -7
without showing a chekerboard manner. This is
accrued to the loose connection between the
vertex dof and the other dofs in the hierarchic
base functions. However, as the elements are
refined to 8 by 24, the error order

Y
u=3,v=0
(0,6) (28)
du/ox=0
6U/9x=0 v=0
v=0 p=0
p=1 '
(00 y=vy=0 (2,0

Fig. 8 Domain and boundary conditions for
Couette flow problem
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Table 6 Sum of errors for the Coutte flow

problem
Elem. # | Deg. | Error in U | Error in V | Error in P
2 by 2 1325E-11 | 9473E-14 | 1.069E-12
6 3 4975E-11 | 6.991E-14 | 1.023E-12
4by 12 2 LI27E-11 | 3557E-13 | 9.946E-09
3 2969E-10 | 9.207E-13 | 1.541E-11
8 by 2 2 382%5E-10 | 748E-13 | 1.078E-10
3 2.794E-09 | 7579E-12 | 4.960E-11
(322) | 6.166E-10 | 2.709E-13 | 4.797E-12
4 by 121(232) | 1.879E-10 | 6.426E-13 | 4.928E-12
(223) 1 4095E-11 | 1845E-13 | B.IB4E-12

becomes -5 and begins to show the chekerboard
type. In this case, the mesh refinement
improve the solution notably.

does
not
For mixed degree solutions, the errors are also
shown in Table 6(for 4 by 12 elements). In this
case, domain is devided into 3 blocks along the
vertical direction. The bottom block is numbered
as one, the middle as two and the uppermost as
three. Even though the use of cubic degree for
the
improvements in solution qualities, the Deg(2,2,3)

velocities does not show appreciable
solution shows some improvement in velocities

at some expense on the pressure solution.

5. Conclusions

To investigate the efficiency of higher order
elements, some numerical tests with hierarchical
shape functions and mixed order in a domain are
conducted, and the observations are presented.

This study draws following four conclusions.

1) By using hierarchical shape functions, one
can generate mixed order solutions in a
systematic way and can code in an efficient
manner.

2) For higher order regions, mesh refining does
not always give more accurate solutions,
hence a proper mesh size is essential.

3) The higher order solutions are very much

the type of boundary

especially for the hierarchical

dependent on
conditions,
elements. Hence it would be safer to use
away from the boundary regions.

4) When using higher order elements as a
remedy on a linear element solution, the
region of lnear elements shoule be large

enough to damp out numerical errors.

The present study, before going on a
construction of three dimensional elements,
summarizes some test results on two

dimensional cases to reevaluate the present code.
Since the code is developed based on the
assembly of each simple blocks, it seems to be
well adapted to a modern solver such as a
domain decomposition method. Also it is desired
to develop a solver to take advantage of
orthogonality properties of hierarchical shape

functions.
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