• Title/Summary/Keyword: Mitochondrial membrane permeability

Search Result 42, Processing Time 0.029 seconds

Effect of cation on solute permeability of mitochondrial membrane (미토콘드리아막의 용질투과성에 미치는 양이온의 영향)

  • 이영녹;이종삼
    • Korean Journal of Microbiology
    • /
    • v.9 no.4
    • /
    • pp.145-148
    • /
    • 1971
  • Mitochondria were isolated from Chlorella cells effects of cation on solute permeability of mitochondrial membrane were investigated using P$^{32}$ as a tracer. It was strikingly increased uptake of phosphate for NaCl, KCl, while evidently decreased phosphate uptake of mitochondrial membrane for $MgCl_2$, $CaCl_2$. This consider that uptake of monovalent cation were increased, but uptake of divalentcation were decreased for permeability of mitochondrial membrane as if the permeability of protoplasmic membrane.

  • PDF

Differential Effect of Harmalol and Deprenyl on Dopamine-Induced Mitochondrial Membrane Permeability Change in PC12 Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of ${\beta}$-carbolines (harmaline and harmalol) and deprenyl on the dopamine-induced change in the mitochondrial membrane permeability and cell death in differentiated PC12 cells. Cell death due to 250 4{\mu}$M dopamine was inhibited by caspase inhibitors (z-IETD.fmk, z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, ascorbate, superoxide dismutase, catalase and carboxy-PTIO). ${\beta}$-Carbolines prevented the dopamine-induced cell death in PCl2 cells, while deprenyl did not inhibit cell death. ${\beta}$-Carbolines decreased the condensation and fragmentation of nuclei caused by dopamine in PC12 cells. ${\beta}$-Carbolines inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, formation of reactive oxygen species and depletion of GSH caused by dopamine in PC12 cells, whereas deprenyl did not decrease dopamine-induced mitochondrial damage. ${\beta}$-Carbolines, deprenyl and antioxidants depressed the formation of nitric oxide and melanin in dopamine-treated PC12 cells. The results suggest that cell death due to dopamine PC12 cells is mediated by caspase-8, -9 and -3. Unlike deprenyl, ${\beta}$-carbolines may attenuate the dopamineinduced cell death in PC12 cells by suppressing change in the mitochondrial membrane permeability through inhibition of the toxic action of reactive oxygen and nitrogen species.

Inhibition of Glutamate-Induced Change in Mitochondrial Membrane Permeability in PC12 cells by 1-Methylated β-carbolines

  • Han, Eun-Sook;Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.11 no.2
    • /
    • pp.112-118
    • /
    • 2003
  • 1-Methylated $\beta$-carbolines (harmaline and harmalol) and antioxidants (N-acetylcysteine and ascorbate) reduced the loss of cell viability in differentiated PC 12 cells treated with 5 mM glutamate. $\beta$-Carbolines prevented the glutamate-induced decrease in mitochondrial membrane potential, cytochrome c release and caspase-3 activation in PC 12 cells. $\beta$-Carbolines reduced the formation of reactive oxygen species and depletion of glutathione due to glutamate in PC12 cells. $\beta$-Carbolines revealed a scavenging action on hydrogen peroxide and reduced the iron and EDTA-mediated degradation of 2-deoxy-D-ribose. The results suggest that I-methylated $\beta$-carbolines attenuate the cytotoxic effect of glutamate on PC12 cells by reducing the alteration of mitochondrial membrane permeability that seems to be mediated by oxidative stress.

Promoting Effect of Hydrogen Peroxide on 1-Methyl-4-phenylpyridinium-induced Mitochondrial Dysfunction and Cell Death in PC12 Cells

  • Lee, Dong-Hee;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The promoting effect of hydrogen peroxide ($H_2O_2$) against the cytotoxicity of 1-methyl-4-phenylpyridinium ($MPP^+$) in differentiated PC12 cells was assessed by measuring the effect on the mitochondrial membrane permeability. Treatment of PC12 cells with $MPP^+$ resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. Addition of $H_2O_2$ enhanced the $MPP^+-induced$ nuclear damage and cell death. Catalase, Carboxy-PTIO, Mn-TBAP, N-acetylcysteine, cyclosporin A and trifluoperazine inhibited the cytotoxic effect of $MPP^+$ in the presence of $H_2O_2$. Addition of $H_2O_2$ promoted the change in the mitochondrial membrane permeability, ROS formation and decrease in GSH contents due to $MPP^+$ in PC12 cells. The results show that the $H_2O_2$ treatment promotes the cytotoxicity of $MPP^+$ against PC12 cells. $H_2O_2$ may enhance the $MPP^+$-induced viability loss in PC12 cells by promoting the mitochondrial membrane permeability change, release of cytochrome c and subsequent activation of caspase-3, which is associated with the increased formation of ROS and depletion of GSH. The findings suggest that $H_2O_2$ as a promoting agent for the formation of mitochondrial permeability transition may enhance the neuronal cell injury caused by neurotoxins.

Antitumor Effects of Camptothecin Combined with Conventional Anticancer Drugs on the Cervical and Uterine Squamous Cell Carcinoma Cell Line SiHa

  • Ha, Sang-Won;Kim, Yun-Jeong;Kim, Won-Yong;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Functional defects in mitochondria are involved in the induction of cell death in cancer cells. We assessed the toxic effect of camptothecin against the human cervical and uterine tumor cell line SiHa with respect to the mitochondria-mediated cell death process, and examined the combined effect of camptothecin and anticancer drugs. Camptothecin caused apoptosis in SiHa cells by inducing mitochondrial membrane permeability changes that lead to the loss of mitochondrial membrane potential, decreased Bcl-2 levels, cytochrome c release, caspase-3 activation, formation of reactive oxygen species and depletion of GSH. Combination of camptothecin with other anticancer drugs (carboplatin, paclitaxel, doxorubicin and mitomycin c) or signaling inhibitors (farnesyltransferase inhibitor and ERK inhibitor) did not enhance the camptothecin-induced cell death and caspase-3 activation. These results suggest that camptothecin may cause cell death in SiHa cells by inducing changes in mitochondrial membrane permeability, which leads to cytochrome c release and activation of caspase-3. This effect is also associated with increased formation of reactive oxygen species and depletion of GSH. Combination with other anticancer drugs (or signaling inhibitors) does not appear to increase the anti-tumor effect of camptothecin against SiHa cells, but rather may reduce it. Combination of camptothecin with other anticancer drugs does not seem to provide a benefit in the treatment of cervical and uterine cancer compared with camptothecin monotherapy.

Effects of Mitochondrial Reactive Oxygen Species on Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae-In;Park, A-Reum;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • Recent studies indicate that reactive oxygen species (ROS) are critically involved in persistent pain primarily through spinal mechanisms, and that mitochondria are the main source of ROS in the spinal dorsal horn. To investigate whether mitochondrial ROS can induce changes in membrane excitability on spinal substantia gelatonosa (SG) neurons, we examined the effects of mitochondrial electron transport complex (ETC) substrates and inhibitors on the membrane potential of SG neurons in spinal slices. Application of ETC inhibitors, rotenone or antimycin A, resulted in a slowly developing and slight membrane depolarization in SG neurons. Also, application of both malate, a complex I substrate, and succinate, a complex II substrate, caused reversible membrane depolarization and enhanced firing activity. Changes in membrane potential after malate exposure were more prominent than succinate exposure. When slices were pretreated with ROS scavengers such as phenyl-N-tert-buthylnitrone (PBN), catalase and 4- hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), malate-induced depolarization was significantly decreased. Intracellular calcium above $100{\mu}M$ increased malateinduced depolarization, witch was suppressed by cyclosporin A, a mitochondrial permeability transition (MPT) inhibitor. These results suggest that enhanced production of spinal mitochondrial ROS can induce nociception through central sensitization.

Effect of Depletion and Oxidation of Cellular GSH on Cytotoxicity of Mitomycin Small Cell Lung Cancer Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.92-100
    • /
    • 2004
  • Effect of the depletion or oxidation of GSH on mitomycin c (MMC)-induced mitochondrial damage and cell death was assessed in small cell lung cancer (SCLC) cells. MMC induced cell death and the decrease in the GSH contents in SCLC cells, which were inhibited by z-LEHD.fmk (a cell permeable inhibitor of caspase-9), z-DQMD.fmk (a cell permeable inhibitor of caspase-3) and thiol compound, N-acetylcysteine. MMC caused nuclear damage, release of cytochrome c and activation of caspase-3, which were reduced by N-acetylcysteine. The depletion of GSH due to L-butionine-sulfoximine enhanced the MMC-induced cell death and formation of reactive oxygen species in SCLC cells, whereas the oxidation of GSH due to diamide or $NH_2Cl$ did not affect cytotoxicity of MMC. The results show that MMC may cause cell death in SCLC cells by inducing mitochondrial dysfunction, leading to activation of caspase-9 and -3. The MMC-induced change in the mitochondrial membrane permeability, followed by cell death, in SCLC cells may be significantly enhanced by the depletion of GSH. In contrast, the oxidation of GSH may not affect cytotoxicity of MMC.

Effect of Ginseng Alcohol Extract on the Oxygen Consumption of Rat Liver Mitochondria (인삼알콜추출물이 쥐간 mitochondria의 산소 소모율에 미치는 영향)

  • Lee, Joong-Woo;Kim, In-Kyo;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.13 no.1_2
    • /
    • pp.23-28
    • /
    • 1979
  • The following results were drawn from the experiment conducted to see the effect of ginseng alcohol extract on the mitochondrial oxidation of the rat liver. 1) Mitochondrial oxygen consumption increased in the low concentration and decreased in the high concentration of ginseng alcohol extract. 2) When the mitochondria was destroyed mechanically or was swollen by low concentration of $AgNO_3$, mitochondrial oxygen consumption was inhibited in all concentration of ginseng alcohol extract. 3) Oxygen consumption of intact mitochondria increased in the low concentration but decreased in the high concentration of sodium deoxycholate. 4) Ginseng alcohol extract inhibited cytochrome oxidase activities of liver mitochondria. These results suggest that low concentration of ginseng alcohol extract activates the oxygen consumption of liver mitochondria by increasing the permeability of the mitochondrial membrane and high concentration of the extract inhibit the oxygen consumption by inhibiting the enzyme activity related to respiration.

  • PDF

TPA-and $H_2O_2$- induced Apoptosis by Epigenetic Mechanism and Preventive Effect of L-Carnosine on TPA- and $H_2O_2$- induced Apoptosis of v-myc Transformed Rat Liver Epithelial Cells

  • Kang, Kyung-Sun;Yun, Jun-Won;Cho, Sung-Dae;Lee, Yong-Soon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.22-40
    • /
    • 2001
  • Apoptosis is characterized by DNA fragmentation, chromatin condensation and plasma membrane blebbing. These apoptotic processes have been mainly associated with genetic mechanisms. Recently, these processes have been also associated with mitochondrial events that include the release of cytochrome c and Diablo/SMAC by modulation of mitochondrial membrane permeability.(omitted)

  • PDF

Modulation of Mitochondrial Membrane Potential and ROS Generation by Nicotinamide in a Manner Independent of SIRT1 and Mitophagy

  • Song, Seon Beom;Jang, So-Young;Kang, Hyun Tae;Wei, Bie;Jeoun, Un-woo;Yoon, Gye Soon;Hwang, Eun Seong
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.503-514
    • /
    • 2017
  • Nicotinamide (NAM) plays essential roles in physiology through facilitating $NAD^+$ redox homeostasis. Importantly, at high doses, it protects cells under oxidative stresses, and has shown therapeutic effectiveness in a variety of disease conditions. In our previous studies, NAM lowered reactive oxygen species (ROS) levels and extended cellular life span in primary human cells. In the treated cells, levels of $NAD^+/NADH$ and SIRT1 activity increased, while mitochondrial content decreased through autophagy activation. The remaining mitochondria were marked with low superoxide levels and high membrane potentials (${\Delta}_{{\Psi}m}$); we posited that the treatment of NAM induced an activation of mitophagy that is selective for depolarized mitochondria, which produce high levels of ROS. However, evidence for the selective mitophagy that is mediated by SIRT1 has never been provided. This study sought to explain the mechanisms by which NAM lowers ROS levels and increases ${\Delta}_{{\Psi}m}$. Our results showed that NAM and SIRT1 activation exert quite different effects on mitochondrial physiology. Furthermore, the changes in ROS and ${\Delta}_{{\Psi}m}$ were not found to be mediated through autophagy or SIRT activation. Rather, NAM suppressed superoxide generation via a direct reduction of electron transport, and increased ${\Delta}_{{\Psi}m}$ via suppression of mitochondrial permeability transition pore formation. Our results dissected the effects of cellular $NAD^+$ redox modulation, and emphasized the importance of the $NAD^+/NADH$ ratio in the mitochondria as well as the cytosol in maintaining mitochondrial quality.