Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0081

Modulation of Mitochondrial Membrane Potential and ROS Generation by Nicotinamide in a Manner Independent of SIRT1 and Mitophagy  

Song, Seon Beom (Department of Life Science, University of Seoul)
Jang, So-Young (Department of Life Science, University of Seoul)
Kang, Hyun Tae (Department of Life Science, University of Seoul)
Wei, Bie (Department of Life Science, University of Seoul)
Jeoun, Un-woo (Department of Biomedical Science and Department of Biochemistry, Ajou University School of Medicine)
Yoon, Gye Soon (Department of Biomedical Science and Department of Biochemistry, Ajou University School of Medicine)
Hwang, Eun Seong (Department of Life Science, University of Seoul)
Abstract
Nicotinamide (NAM) plays essential roles in physiology through facilitating $NAD^+$ redox homeostasis. Importantly, at high doses, it protects cells under oxidative stresses, and has shown therapeutic effectiveness in a variety of disease conditions. In our previous studies, NAM lowered reactive oxygen species (ROS) levels and extended cellular life span in primary human cells. In the treated cells, levels of $NAD^+/NADH$ and SIRT1 activity increased, while mitochondrial content decreased through autophagy activation. The remaining mitochondria were marked with low superoxide levels and high membrane potentials (${\Delta}_{{\Psi}m}$); we posited that the treatment of NAM induced an activation of mitophagy that is selective for depolarized mitochondria, which produce high levels of ROS. However, evidence for the selective mitophagy that is mediated by SIRT1 has never been provided. This study sought to explain the mechanisms by which NAM lowers ROS levels and increases ${\Delta}_{{\Psi}m}$. Our results showed that NAM and SIRT1 activation exert quite different effects on mitochondrial physiology. Furthermore, the changes in ROS and ${\Delta}_{{\Psi}m}$ were not found to be mediated through autophagy or SIRT activation. Rather, NAM suppressed superoxide generation via a direct reduction of electron transport, and increased ${\Delta}_{{\Psi}m}$ via suppression of mitochondrial permeability transition pore formation. Our results dissected the effects of cellular $NAD^+$ redox modulation, and emphasized the importance of the $NAD^+/NADH$ ratio in the mitochondria as well as the cytosol in maintaining mitochondrial quality.
Keywords
membrane potential; mitochondria; mitophagy; mPTP; nicotinamide; SIRT1; superoxide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bernardi, P., Vassanelli, S., Veronese, P., Colonna, R., Szabo, I., and Zoratti, M. (1992). Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J. Biol. Chem. 267, 2934-2939.
2 Cheng, Y., Gulbins, E., and Siemen, D. (2011). Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel. Cell Physiol. Biochem. 27, 191-200.   DOI
3 Choi, H.J., Jang, S.Y., and Hwang, E.S. (2015). High-dose nicotinamide suppresses ROS generation and augments population expansion during CD8(+) T cell activation. Mol. Cells 38, 918-924.   DOI
4 Rennie, G., Chen, A.C., Dhillon, H., Vardy, J., and Damian, D.L. (2015). Nicotinamide and neurocognitive function. Nutr. Neurosci. 18, 193-200.   DOI
5 Sakakibara, Y., Mitha, A.P., Ogilvy, C.S., Maynard, K.I. (2000). Posttreatment with nicotinamide (vitamin B(3)) reduces the infarct volume following permanent focal cerebral ischemia in female Sprague-Dawley and wistar rats. Neurosci Lett. 281,111-114.   DOI
6 Santidrian, A.F., LeBoeuf, S.E., Wold, E.D., Ritland, M., Forsyth, J.S., Felding, B.H. (2014). Nicotinamide phosphoribosyltransferase can affect metastatic activity and cell adhesive functions by regulating integrins in breast cancer. DNA Repair (Amst) 23, 79-87.   DOI
7 Sasaki, T., Maier, B., Bartke, A., and Scrable, H. (2006). Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 5, 413-422.   DOI
8 Saunders, L.R., Sharma, A.D., Tawney, J., Nakagawa, M., Okita, K., Yamanaka, S., Willenbring, H., and Verdin, E. (2010). miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2, 415-431.
9 Schneider, M.P., Delles, C., Schmidt, B.M., Oehmer, S., Schwarz, T.K., Schmieder, R.E., and John, S. (2005). Superoxide scavenging effects of N-acetylcysteine and vitamin C in subjects with essential hypertension. Am. J. Hypertens. 18, 1111-1117.   DOI
10 Chong, Z.Z., Lin, S.H., and Maiese, K. (2002). Nicotinamide modulates mitochondrial membrane potential and cysteine protease activity during cerebral vascular endothelial cell injury. J. Vasc. Res. 39, 131-147.   DOI
11 Crowley, C.L., Payne, C.M., Bernstein, H., Bernstein, C., and Roe, D. (2000). The NAD+ precursors, nicotinic acid and nicotinamide protect cells against apoptosis induced by a multiple stress inducer, deoxycholate. Cell Death Differ. 7, 314-326.   DOI
12 Dengjel, J., and Abeliovich, H. (2017). Roles of mitophagy in cellular physiology and development. Cell Tissue Res. 367, 95-109.   DOI
13 Du, H., and Yan, S.S. (2010). Mitochondrial permeability transition pore in Alzheimer's disease: cyclophilin D and amyloid beta. Biochim. Biophys. Acta. 1802, 198-204.   DOI
14 Eiyama, A., and Okamoto, K. (2015). PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol. 33, 95-101.   DOI
15 Feldman, J.L., Dittenhafer-Reed, K.E., Kudo, N., Thelen, J.N., Ito, A., Yoshida, M., and Denu, J.M. (2015). Kinetic and structural basis for acyl-group selectivity and NAD(+) dependence in sirtuin-catalyzed deacylation. Biochemistry 54, 3037-3050.   DOI
16 Stowe, D.F., and Camara, A.K. (2009). Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid. Redox. Signal.11, 1373-1414.   DOI
17 Starkov, A.A., and Fiskum, G. (2003). Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P).H redox state. J. Neurochem. 86, 1101-1107.   DOI
18 Rao, V.K., Carlson, E.A., and Yan, S.S. (2014). Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim. Biophys. Acta. 1842, 1267-1272.   DOI
19 Ghosh, D., LeVault, K.R., Barnett, A.J., and Brewer, G.J. (2012). A reversible early oxidized redox state that precedes macromolecular ROS damage in aging nontransgenic and 3xTg-AD mouse neurons. J Neurosci. 32, 5821-5832.   DOI
20 Stevens, M.J., Li, F., Drel, V.R., Abatan, O.I., Kim, H., Burnett, D., Larkin, D., and Obrosova, I.G. (2007). Nicotinamide reverses neurological and neurovascular deficits in streptozotocin diabetic rats. J. Pharmacol. Exp. Ther. 320, 458-464.
21 Thompson, A.M., Wagner, R., and Rzucidlo, E.M. (2014). Agerelated loss of SirT1 expression results in dysregulated human vascular smooth muscle cell function. Am. J. Physiol. Heart Circ. Physiol. 307, H533-541.   DOI
22 Todisco, S., Agrimi, G., Castegna, A., and Palmieri, F. (2006). Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J. Biol. Chem. 281, 1524-1531.   DOI
23 Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., Las, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446.   DOI
24 Huang, J.Y., Hirschey, M.D., Shimazu, T., Ho, L., and Verdin, E. (2010). Mitochondrial sirtuins. Biochim. Biophys. Acta. 1804, 1645-1651.   DOI
25 Hafner, A.V., Dai, J., Gomes, A.P., Xiao, C.Y., Palmeira, C.M., Rosenzweig, A., and Sinclair, D.A. (2010). Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses agerelated cardiac hypertrophy. Aging (Albany NY). 2, 914-923.
26 Harlan, B.A., Pehar, M., Sharma, D.R., Beeson, G., Beeson, C.C., and Vargas, M.R. (2016). Enhancing NAD+ salvage pathway reverts the toxicity of primary astrocytes expressing amyotrophic lateral sclerosislinked mutant superoxide dismutase 1 (SOD1). J. Biol. Chem. 291, 10836-10846.   DOI
27 Huang, J., Gan, Q., Han, L., Li, J., Zhang, H., Sun, Y., Zhang, Z., and Tong, T. (2008). SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One 3, e1710.   DOI
28 Hwang, E.S. and Song, S.B. (2017). Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol. Life Sci. DOI 10.1007/s00018-017-2527-8.   DOI
29 Hwang, E.S., Yoon, G., and Kang, H.T. (2009). A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci. 66, 2503-2524.   DOI
30 Jang, S.Y., Kang, H.T., and Hwang, E.S. (2012). Nicotinamideinduced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304-19314.   DOI
31 Yao, Y., Yang, Y., and Zhu, W.G. (2014). Sirtuins: nodes connecting aging, metabolism and tumorigenesis. Curr. Pharm. Des. 20, 1614-1624.   DOI
32 Vercesi, A.E., Castilho, R.F., Meinicke, A.R., Valle, V.G., Hermes-Lima, M., and Bechara, E.J. (1994). Oxidative damage of mitochondria induced by 5-aminolevulinic acid: role of $Ca^{2+}$ and membrane protein thiols. Biochim. Biophys. Acta 1188, 86-92.   DOI
33 Villalba, J M., and Alcain, F.J. (2012). Sirtuin activators and inhibitors. Biofactors 38, 349-359.   DOI
34 Yang, H., Yang, T., Baur, J. A., Perez, E., Matsui, T., Carmona, J.J., Lamming, D.W., Souza-Pinto, N.C., Bohr, V.A., Rosenzweig, A., et al. (2007). Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095-1107.   DOI
35 Kiuchi, K., Yoshizawa, K., Shikata, N., Matsumura, M., Tsubura, A. (2002). Nicotinamide prevents N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in Sprague-Dawley rats and C57BL mice. Exp. Eye Res. 74, 383-392.   DOI
36 Jendrach, M., Pohl, S., Voth, M., Kowald, A., Hammerstein, P., and Bereiter-Hahn, J. (2005). Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech. Ageing Dev. 126, 813-821.   DOI
37 Kaneko S., Wang J., Kaneko M., Yiu G., Hurrell J.M., Chitnis T., Khoury S.J., and He Z. (2006). Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models. J. Neurosci. 26, 9794-9804.   DOI
38 Kang, H.T., and Hwang, E.S. (2009). Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426-438.   DOI
39 Kang, H.T., Lee, H.I., and Hwang, E.S. (2006). Nicotinamide extends replicative lifespan of human cells. Aging Cell 5, 423-436.   DOI
40 Kim, I., Rodriguez-Enriquez, S., and Lemasters, J.J. (2007). Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462, 245-253.   DOI
41 Klaidman, L.K., Mukherjee, S.K., and Adams, J.D., Jr. (2001). Oxidative changes in brain pyridine nucleotides and neuroprotection using nicotinamide. Biochim. Biophys. Acta. 1525, 136-148.   DOI
42 Kushnareva, Y., Murphy, A. N., and Andreyev, A. (2002). Complex Imediated reactive oxygen species generation: modulation by cytochrome c and NAD(P).+ oxidation-reduction state. Biochem. J. 368, 545-553.   DOI
43 Lee, H.C., Yin, P.H., Chi, C.W., and Wei, Y.H. (2002). Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 9, 517-526.   DOI
44 Leung, A.W., and Halestrap, A.P. (2008). Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim. Biophys. Acta 1777, 946-952.   DOI
45 Lee, E.J., Wu, T.S., Chang, G.L., Li, C.Y., Chen, T.Y., Lee, M.Y., Chen, H.Y., and Maynard, K.I. (2006). Delayed treatment with nicotinamide inhibits brain energy depletion, improves cerebral microperfusion, reduces brain infarct volume, but does not alter neurobehavioral outcome following permanent focal cerebral ischemia in Sprague Dawley rats. Curr. Neurovasc. Res. 3, 203-213.   DOI
46 Lee, H.I., Jang, S.Y., Kang, H.T., and Hwang, E.S. (2008). p53-, SIRT1-, and PARP-1-independent downregulation of p21WAF1 expression in nicotinamide-treated cells. Biochem. Biophys. Res. Commun. 368, 298-304.   DOI
47 Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W., and Finkel, T. (2008). A role for the NADdependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374-3379.   DOI
48 Li, F., Chong, Z.Z., and Maiese, K. (2004). Navigating novel mechanisms of cellular plasticity with the NAD+ precursor and nutrient nicotinamide. Front. Biosci. 9, 2500-2520.   DOI
49 Machida, K. and Osada, H. (2003). Molecular interaction between cyclophilin D and adenine nucleotide translocase in cytochrome c release: does it determine whether cytochrome c release is dependent on permeability transition or not? Ann. N Y Acad. Sci. 1010, 182-185   DOI
50 Maiese, K., Chong, Z.Z., Hou, J., Shang, Y.C. (2009). The vitamin nicotinamide: translating nutrition into clinical care. Molecules 14, 3446-3485.   DOI
51 Murray, M.F. (2003). Nicotinamide: an oral antimicrobial agent with activity against both Mycobacterium tuberculosis and human immunodeficiency virus. Clin. Infect Dis. 36, 453-460.   DOI
52 Zhang, J., Fitsanakis, V.A., Gu, G., Jing, D., Ao, M., Amarnath, V., and Montine, T.J. (2003). Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J. Neurochem. 84, 336-346.   DOI
53 Zorov, D.B., Juhaszova, M., and Sollott, S.J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909-950.   DOI
54 Ayoub, I.A., and Maynard, K.I. (2002). Therapeutic window for nicotinamide following transient focal cerebral ischemia. Neuroreport 13, 213-216.   DOI
55 Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato, F., et al. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221.   DOI
56 Menzies, K.J., and Hood, D.A. (2012). The role of SirT1 in muscle mitochondrial turnover. Mitochondrion 12, 5-13.   DOI
57 Milne, J.C., Lambert, P.D., Schenk, S., Carney, D.P., Smith, J.J., Gagne, D.J., Jin, L., Boss, O., Perni, R.B., Vu, C.B., et al. (2007). Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716.   DOI
58 Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13.   DOI
59 Narendra, D., Tanaka, A., Suen, D.F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803.   DOI
60 Oblong, J.E. (2014). The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging. DNA Repair (Amst). 23, 59-63.   DOI
61 Olmos, Y., Sanchez-Gomez, F.J., Wild, B., Garcia-Quintans, N., Cabezudo, S., Lamas, S., and Monsalve, M. (2013). SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC 1alpha complex. Antioxid Redox Signa. 19, 1507-1521.   DOI
62 Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1998). Imaging the mitochondrial permeability transition pore in intact cells. Biofactors 8, 263-272.   DOI
63 Bayrakdar, E.T., Armagan, G., Uyanikgil, Y., Kanit, L., Koylu, E., and Yalcin, A. (2014). Ex vivo protective effects of nicotinamide and 3-aminobenzamide on rat synaptosomes treated with Abeta(1-42). Cell Biochem. Funct. 32, 557-564.   DOI