Browse > Article

Differential Effect of Harmalol and Deprenyl on Dopamine-Induced Mitochondrial Membrane Permeability Change in PC12 Cells  

Lee, Chung-Soo (Department of Pharmacology, College of Medicine, Chung-Ang University)
Publication Information
Biomolecules & Therapeutics / v.12, no.1, 2004 , pp. 9-18 More about this Journal
Abstract
Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of ${\beta}$-carbolines (harmaline and harmalol) and deprenyl on the dopamine-induced change in the mitochondrial membrane permeability and cell death in differentiated PC12 cells. Cell death due to 250 4{\mu}$M dopamine was inhibited by caspase inhibitors (z-IETD.fmk, z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, ascorbate, superoxide dismutase, catalase and carboxy-PTIO). ${\beta}$-Carbolines prevented the dopamine-induced cell death in PCl2 cells, while deprenyl did not inhibit cell death. ${\beta}$-Carbolines decreased the condensation and fragmentation of nuclei caused by dopamine in PC12 cells. ${\beta}$-Carbolines inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, formation of reactive oxygen species and depletion of GSH caused by dopamine in PC12 cells, whereas deprenyl did not decrease dopamine-induced mitochondrial damage. ${\beta}$-Carbolines, deprenyl and antioxidants depressed the formation of nitric oxide and melanin in dopamine-treated PC12 cells. The results suggest that cell death due to dopamine PC12 cells is mediated by caspase-8, -9 and -3. Unlike deprenyl, ${\beta}$-carbolines may attenuate the dopamineinduced cell death in PC12 cells by suppressing change in the mitochondrial membrane permeability through inhibition of the toxic action of reactive oxygen and nitrogen species.
Keywords
deprenyl; dopamine; mitochondrial membrane permeability; differentiated PC12 cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Birkmayer, W., Knoll, J., Riederer, P., Youdim, M. B., Hars, V. and Marton, J. (1985). Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson's disease: a longterm study. J. Neural. Transm. 64, 113-127   DOI
2 Cassarino, D. S., Parks, J. K., Parker, W. D. Jr. and Bennett, J. P. Jr. (1999). The Parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim. Biophys. Acta 1453, 49-62   DOI   ScienceOn
3 Chakraborati, T., Das, S., Mondal, M., Roychoudhury, S. and Chakraborti, S. (1999). Oxidant, mitochondria and calcium: an overview. Cell Signal. 11, 77-85   DOI   ScienceOn
4 Chandra, J., Samali, A. and Orrenius, S. (2000). Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 29, 323-333   DOI   ScienceOn
5 Cobuzzi, R. J. Jr., Neafsey, E. J. and Collins, M. A. (1994). Differential cytotoxicities of N-methyl-$\beta$-carbolinium analogues of MPP+ in PC12 cells: insights into potential neurotoxicants in Parkinsons disease. J. Neurochem. 62, 1503-1510   DOI   ScienceOn
6 Du, Y., Dodel, R. C., Bales, K. R., Jemmerson, R., HamitonByrd, E. and Paul, S. M. (1997). Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons. J. Neurochem. 69, 1382-1388   DOI   ScienceOn
7 Greene, L. A. and Tischler, A. S. (1976). Establishment of a noradrenergic clonal cell line of rat adrenal pheochtomocytoma cells that are respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73, 2424-2428   DOI   ScienceOn
8 Jacobsson, S. O. and Fowler, C. J. (1999). Dopamine and glutamate neurotoxicity in cultured chick telencephali cells: effects of NMDA antagonists, antioxidants and MAO inhibitors. Neurochem. Int. 34, 49-62   DOI   ScienceOn
9 Kadota, T., Yamaai, T., Saito, Y., Akita, Y., Kawashima, S., Moroi, K., Inagaki, N. and Kadota, K. (1996). Expression of dopamine transporter at the tips of growing neurites of PC12 cells. J. Histochem. Cytochem. 44, 989-996   DOI   ScienceOn
10 Kalisch, B. E., Bock, N. A., Davis, W. L., and Rylett, R. J. (2002). Inhibitors of nitric oxide synthase attenuate nerve growth factor-mediated increases in choline acetyltransferase expression in PC12 cells. J. Neurochem. 81, 624-635   DOI   ScienceOn
11 Kim, K. J., Jang, Y. Y., Han, E. S. and Lee, C. S. (1999). Modulation of brain mitochondrial membrane permeability and synaptosomal Ca2+ transport by dopamine oxidation. Mol. Cell. Biochem. 201, 88-96
12 Banaclocha, M. M., Hernandez, A. I., Martinez, N. and Ferrandiz, M. L. (1997). N-Acetylcysteine protects against agerelated increase in oxidized proteins in mouse synaptic mitochondria. Brain Res. 762, 256-258   DOI   ScienceOn
13 Berman, S. B. and Hastings, T. G. (1999). Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease. J. Neurochem. 73, 1127-1137   DOI
14 Bernardi, P. (1999). Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127-1155
15 Matsubara, K., Gonda, T., Sawada, H., Uezono, T., Kobayashi, Y., Kawamura, T., Ohtaki, K., Kimura, K. and Akaike, A. (1998). Endogenously occurring $\beta$-carboline induces Parkinsonism in nonprimate animals: a possible causative protoxin in idiopathic Parkinson's disease. J. Neurochem. 70, 727-735   DOI   ScienceOn
16 Fujita, K., Lazarovici, P. and Guroff, G. (1989). Regulation of the differentiation of PC12 pheochromocytoma cells. Regulation of differentiation in eukaryotic cells. Environ. Health Perspect. 80, 127-142   DOI
17 Mignotte, B. and Vayssiere, J. L. (1998). Mitochondria and apoptosis. Eur. J. Biochem. 252, 1-15   DOI   ScienceOn
18 Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63   DOI   ScienceOn
19 Fu, W., Luo, H., Parthasarathy, S. and Mattson, M. P. (1998). Catecholamines potentiate amyloid $\beta$-peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol. Dis. 5, 229-243   DOI   ScienceOn
20 Gearhart, D. A., Toole, P. F. and Beach, J. W. (2002). Identification of brain proteins that interact with 2-methylnorharman. An analog of the parkinsonian-inducing toxin, MPP+. Neurosci. Res. 44, 255-265   DOI   ScienceOn
21 Graham, D. G. (1978). Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinines. Mol. Pharmacol. 14, 633-643
22 Lotharius, J., Dugan, L. L. and O'Malley, K. L. (1999). Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci. 19, 1284-1293
23 Maher, P. and Davis, J. B. (1996). The role of monoamine metabolism in oxidative glutamate toxicity. J. Neurosci. 16, 6394-6401
24 Park, T. w., Kwon, O. S., Park, S. Y., Han, E. S. and Lee, C. S. (2003). N-methylated $\beta$-carbolines protect PC12 cells from cytotoxic effect of MPP+ by attenuation of mitochondrial membrane permeability change. Neurosci. Res. 46, 349-358   DOI   ScienceOn
25 Kim, Y. K., Jang, Y. Y., Kim, D. H., Ko, H. H., Han, E. S. and Lee, C. S. (2001). Differential regulation of protein tyrosine kinse on free radical production, granule enzyme release, and cytokine synthesis by activated murine peritoneal macrophages. Biochem. Pharmacol. 61, 87-96   DOI   ScienceOn
26 Pereira, C. F. and Oliveira, C. R. (2000). Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular Ca2+ homeostasis. Neurosci. Res. 37,227-236   DOI   ScienceOn
27 Seaton, T. A., Cooper, J. M. and Schapira, A. H. (1997). Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res. 777, 110-118   DOI   ScienceOn
28 Tatton, W. G. and Chalmers-Redman, R. M. E. (1996). Modulation of gene expression rather than monoamine oxidase inhibition. Neurology 47(Suppl. 3), SI71-S183   DOI
29 Lai, C.-T. and Yu, P.H. (1997). Dopamine- and L-$\beta$-3,4-dihydroxyphenylalanine hydrochloride (L-DOPA)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors. Biochem. Pharmacol. 53, 363-372   DOI   ScienceOn
30 Lee, C. S., Han, J. H., Jang, Y. Y., Song, J. H. and Han, E. S. (2002). Differential effect of catecholamines and MPP+ on membrane permeability in brain mitochondria and cell viability in PC12 cells. Neurochem. Int. 40, 361-369   DOI   ScienceOn
31 Linert, W., Herlinger, E., Jameson, R. F., Kienzl, E., Jellinger, K. and Youdim, M. B. H. (1996). Dopamine, 6-hydroxydopamine, iron, and dioxygen-their mutual interactions and possible implications in the developement of Parkinson's disease. Biochim. Biophys. Acta 1316, 160-168   DOI   ScienceOn
32 O'Hearn, E. and Molliver, M. E. (1993). Degeneration of Purkinje cells in parasagittal zones of the cerebellar vermis after treatment with ibogaine or harmaline. Neuroscience 55, 303-310   DOI   ScienceOn
33 Oberhammer, F. A., Pavelka, M., Sharma, S., Tiefenbacher, R., Purchio, A. F., Bursch, W. and Schulte-Hermann, R. (1992). Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor $\beta$1. Proc. Natl. Acad. Sci. USA 89, 5408-5412   DOI   ScienceOn
34 Offen, D., Ziv, I., Sternin, H., Melamed, E. and Hochman, A. (1996). Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson's disease. Exp. Neural. 141, 32-39   DOI   ScienceOn
35 Offen, D., Gorodin, S., Melamed, E., Hanania, J. and Malik, Z. (1999). Dopamine-melanin is actively phagocytized by PCI2 cells and cerebellar granular cells: possible implications for the etiology of Parkinson's disease. Neurosci. Lett. 260, 101-104   DOI   ScienceOn
36 Zeevalk, G. D., Bernard, L. P., Albers, D. S., Mirochnitchenko, O., Nicklas, W. J. and Sonsalla, P. K. (1997). Energy stress-induced dopamine loss in glutathione peroxidase-overexpressing transgenic mice and in glutathione-depleted mesencephalic cultures. J. Neurochem. 68, 426-429   DOI   ScienceOn
37 Tatton, W. G., Chalmers-Redman, R. M. E., Ju, W. J. H., Mammen, M., Carlile, G. W., Pong, A. W. and Tatton, N. A. (2002). Propargylamines induce antiapoptotic new protein synthesis in serum-and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J. Pharmacol. Exp. Ther. 301, 753-764   DOI   ScienceOn
38 van Klaveren, R. J., Hoet, P. H., Pype, J. L., Demedts, M. and Nemery, B. (1997). Increase in gamma-glutamyltransferase by glutathione depletion in rat type II pneumocytes. Free Radic. Biol. Med. 22, 525-534   DOI   ScienceOn
39 Wu, R. M., Chen, R. C. and Chiueh, C. C. (2000). Effect of MAO-B inhibitors on MPP+ toxicity in Vivo. Ann. N. Y. Acad. Sci. 899, 255-261   DOI