• Title/Summary/Keyword: Mitochondrial NADH dehydrogenase

Search Result 39, Processing Time 0.03 seconds

Characterization of Mitochondrial NADH Dehydrogenase in Lentinus edodes (표고버섯의 미토콘드리아성 NADH 탈수소효소의 특성)

  • Kim, Eun-Mi;Min, Ji-Young;Min, Tae-Jin
    • The Korean Journal of Mycology
    • /
    • v.26 no.1 s.84
    • /
    • pp.119-126
    • /
    • 1998
  • Mitochondria were isolated from Lentinus edodes and properties of the mitochondrial NADH dehydrogenase were studied. Optimal pH, temperature, and thermal stability of the enzyme were estimated to be 7.6, $33^{\circ}C$, and stable for one hour at $50^{\circ}C$. The apparent $K_m$ for the NADH was 0.33 mM. This enzyme catalyzed to transfer electrons from NADH to ferricyanide, decylubiquinone, and 2,6-dichloro-phenol-indophenol. 0.5 mM antimycin A and 0.01 mM dibromothymoquinone strongly inhibited 87.8% and 76.5% of the enzyme activities. 0.01 mM oligomycin known as an inhibitor of ATPase also strongly inhibited 79.2% of activities. 0.5 mM 5,5'-dithiobis-(2-nitrobenzoic acid) and 1.0 mM N-ethylmaleimide known as a modifier of SH group inhibited 50.4% and 36.7% of activities. 1 mM ethyl 2,4-dihydroxy-6-methyl benzoate and 10 mM orcinol, which had been known as an antibiotics isolated from Umbilicaria vellea according to our previous work, stimulated 68.4% and 48.1% of the enzyme activities.

  • PDF

Identification of mitochondrial mutant (NADH-dehydrogenase) using PCR method and regeneration of mutants from Zea mays (PCR 기법을 사용한 옥수수 미토콘드리아 변이체 (NADH-dehydrogenase)의 선별과 재분화)

  • 설인환
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • The maize mitochondrial mutant (NCS2) is derived from homologous recombination between genes encoding NADH dehydrogenase subunit 4 and subunit 6. Plants from mitochondria mutants exhibited severe related growth and development including dwarfism and striping on the leaves. Aborted embryos from NCS2 mutants have been rescued and cultured on the N6 medium supplemented with 2,4-D 1 mg/l. Most calli from NCS2 aborted embryos showed slow growing pattern at first stage. However, upon continuous culturing them on the medium, those were segregated into mutant and normal callus lines. These segregations could be detected by using PCR method with three primers. Such segregation seems to be resulted from the preferential growth of normal cells over the mutant cells on the normal culture condition. Therefore, this method can be used for determining rate of indirect cytoplasmic segregation by estimating amplified band intensities. When NCS2 mutant callus lines cultured on regeneration medium, no adventitious shoot induction was observed. However, callus lines with more mitochondria induced adventitious shoots. These studies suggest that mitochondria NADH-dehydrogenase for electron transport in the inner membrane of mitochondria is essential for the differentiation and development of plants.

  • PDF

Cloning and DNA Sequences Anaylsis of Mitochondrial NADH Dehydrogenase Subunit 3 from Korean Chum Salmon, Oncorhynchus keta (한국산 연어의 미토콘드리아 NADH Dehydrogengse Subunit 3 영역의 클로닝 및 DNA 염기서열 분석)

  • CHOI Yoon-Sil;LEE Youn-Ho;JIN Deuk-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.94-99
    • /
    • 2003
  • Mitochondrial DNAs has been used frequently as genetic markers for the population genetic studies of salmonid fishes. Samples used in this experiment were chum salmons (Oncorhynchus keta) from Korea. We analyzed variation of mitochondrial NADH dehydrogenase subunit 3 gene (ND3) among 4 individuals of the Korea population. Genomic DNA was extracted from the liver of the chum salmon samples. Then, the ND3 gene was amplified by polymerase chain reaction (PCR) including the 3' region of cytochrome oxidase III gene (COIII) and the 5` region of NADH dehydrogenase subunit 4L gene (ND4L). The size of the PCR product was 752 Up and the sequences showed some genetic variation among those four individuals. Genetic variations were observed in 7 sites as single nucleotide polymorphism (SNP). Within the open reading frame of the ND3 gene which encodes 116 amino acids, 5 nucleotide substitutions were found. Both transitional and transversional changes occurred more frequently with transitional changes. Comparison of these sequences with the others of a Japanese chum salmon in GenBank showed 5 sites of SNPs. This study provided the basic information of SNP in ND3 gene among Korean chum salmons and demonstrated the possible use of the SNP data as a genetic marker.

Genetic Variation of Korean Masu Salmon (Oncorhynchus masou) Populations Inferred from Mitochondrial DNA Sequence Analysis

  • Yoon, Moon-Geun;Jin, Hyung-Joo;Seong, Ki-Baek;Jin, Deuk-Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.36-40
    • /
    • 2008
  • We analyzed the nucleotide sequences of about 500 bp of the mitochondrial NADH dehydrogenase subunit 3 (ND3) gene to estimate the genetic variation of Korean masu salmon (Oncorhynchus masou) populations. DNA samples were collected from 104 river-only specimens and 52 anadromous specimens from three hatcheries and one river. There are no records of artificial release into the river. We amplified the ND3 gene by polymerase chain reaction, targeting areas that included parts of the cytochrome oxidase III gene and the NADH dehydrogenase subunit 4L gene, and defined 14 haplotypes based on 12 variable nucleotide sites in the examined region. Among the haplotypes, ten were specific to river-only specimens within hatchery populations. Haplotype diversity of river-only populations in hatcheries was higher than that of anadromous and wild populations. Pairwise population $F_{ST}$ estimates and neighbor-joining tree analyses inferred that anadromous and river-only populations were distinct. These results suggest that sequence polymorphism in the ND3 region may be a useful marker for analyzing the genetic variation and population structure of masu salmon.

Luteolin, a Bioflavonoid, Attenuates Azoxymethane-Induced Effects on Mitochondrial Enzymes in Balb/c Mice

  • Pandurangan, Ashok Kumar;Sadagopan, Suresh Kumar Ananda;Dharmalingam, Prakash;Ganapasam, Sudhandiran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6669-6672
    • /
    • 2013
  • Colon cancer (CRC) is a serious health problem throughout the world. Development of novel drugs without side effects for this cancer is crucial. Luteolin (LUT), a bioflavonoid, has many beneficial effects such as antioxidant, anti-inflammatory and anti-proliferative potential. was a potent chemical carcinogen used for the induction of colon cancer. Colon carcinogenesis was initiated by intraperitoneal injection of azoxymethane (AOM) to mice at the dose of 15 mg/body kg weight in Balb/C mice for 3 weeks. Mice were treated with LUT at the dose of 1.2 mg/body kg weight orally. Mitochondrial enzymes such as isocitrate dehydrogenase (ICDH), ${\alpha}$-keto dehydrogenase (${\alpha}$-KDH), succinate dehydrogenase (SDH) and the activities of respiratory chain enzymes NADH dehydrogenase and cytochrome c oxidase were found to be elevated in AOM-treated animals. Treatment with LUT decreased the activities of all the parameters significantly. Hence, LUT might be a potent anticancer agent against colorectal cancer.

Sequence Analysis, Molecular Cloning and Restriction Mapping of Mitochondreal Genome of Domesticated Silkworm, Bombyx mori (누에 미토콘드리아 유전체의 제한효소 지도작성, 클로닝 및 염기서열 분석)

  • 이진성;성승현;김용성;서동상
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.14-23
    • /
    • 2000
  • The mitochondrial genome of domesticated silkworm (Bombyx mori) was mapped with five restriction endonucleases (BamHI, EcoRI, HindIII, PstI and XbaI), the entire genome was cloned with HindIII and EcoRI. From the end sequencing results of 5$^1$and 3$^1$region for full genome set of eleven mitochondrial clones, the seven mitochondrial genes (NADH dehydrogenase 6, ATPase 6, ATPase 8, tRN $A^{Lys}$, tRN $A^{Asp}$, tRN $A^{Thr}$ and tRN $A^{Phe}$ of mori were identified on the basis of their nucleotide sequence homology. The nucleotide composition of NADH dehydrogenase 6 was heavily biased towards adenine and thymine, which accounted for 87.76%. On basis of the sequence similarity with published tRNA genes from six insect species, the tRN $A^{Lys}$, tRN $A^{Asp}$ and tRN $A^{Thr}$ were showed stable canonical clover-leaf tRNA structures with acceptible anticodons. However, both the DHU and T$\psi$C arms of tRN $A^{Phe}$ could not form any stable stem-loop structure. The two overlapping gene pairs (tRN $A^{Lys}$ -tRN $A^{ASP}$ and ATPase8-ATPase6) were found from our sequencing results. The genes are encoded on the same strad. ATPase8 and ATPase6 overlaps (ATGATAA) which are a single example of overlapping events between abutted protein-coding genes are common, and there is evidence that the two proteins are transcribed from a single bicistronic message by initiation at 5$^1$terminal start site for ATPase8 and at an internal start site for ATPase6. Ultimately, this result will provide assistance in designing oligo-nucleotides for PCR amplification, and sequencing the specific mitochondrial genes for phylogenetics of geographic races, genetically improved silkworm strains and wild silkworm (mandarina) which is estimated as ancestal of domesticated silkworm.sticated silkworm.

  • PDF

Effects of Local Anesthetics on Electron Transport and Generation of Superoxide Radicals in Mitochondria (국소마취제가 Mitochondria에서의 전자이동 및 Superoxide Radicals의 생성에 미치는 영향)

  • Lee, Chung-Soo;Shin, Yong-Kyoo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.113-121
    • /
    • 1987
  • Local anesthetics were investigated for their effects on mitochondrial electron transport system, production of superoxide radical from submitochondrial particles and malondialdehyde production through lipid per oxidation. Local anesthetics had various effects on activities of enzymes in electron transport chain. The activities of NADH dehydrogenase, NADH oxidase and NADH-ubiquinone oxidoreductase were effectively inhibited by lidocaine, procaine and dibucaine but slightly influenced by cocaine. The activities of succinate dehydrogenase, succinate-cytochrome c oxidoreductase and succinate-ubiquinone oxidoreductase were inhibited by lidocaine and dibucaine, but the succinate oxidase activity was stimulated by local anesthetics. Both dihydroubiquinone-cytochrome c oxidoreductase and cytochrome c oxidase activities were inhibited by local anesthetics. In these reactions, the response of Complex I segment to local anesthetics was greater than other Complex segments. Local anesthetics inhibited both the superoxide production from submitochondrial particles supplemented with succinate or NADH and the enhanced production of superoxide radicals by antimycin. The malondialdehyde production by oxygen free radicals was inhibited by local anesthetics. These results suggest that the inhibition of superoxide and malondialdehyde production caused by local anesthetics may be brought by suppression of the electron transport in mitochondria at sites in or near complex I segment.

  • PDF

Phylogenic Analysis of Locusta migratoria (Orthoptera: Acridae) in Haenam-gun and Muan-gun, Jeollanam-do, Korea Using Mitochondrial NADH dehydrogenase subunits (전라남도 해남과 무안의 풀무치 개체군에 대한 마이토콘드리아 NADH dehydrogenase subunit 들을 이용한 계통분석)

  • Lee, Gwan Seok;Kim, Young Ha;Jung, Jin Kyo;Koh, Young Ho
    • Korean journal of applied entomology
    • /
    • v.56 no.4
    • /
    • pp.371-376
    • /
    • 2017
  • In a nationwide survey of the occurrence and density of the migratory locust (Locusta migratoria), high density was continuously observed in the reclaimed areas of Mangun-myeon in Muan-gun, Jeollanam-do, and Sanye-myeon in Haenam-gun, Jeollanam-do, Korea. We have analyzed the nucleotide sequences of NADH dehydrogenase subunit (NAD) 2, NAD4, and NAD5 genes in order to determine the origins of the migratory locusts at two sites. According to the analysis, the migratory locusts in Haenam-gun were closely related with those in Liaoning Province and Heilongjiang Province in the northeast China. In contrast, the migratory locusts in Muan-gun were most similar to those in Japan. Because Korean migratory locusts were not included in the previous global study on the evolution and migration of migratory locusts, we did not know the origin of Korean migratory locusts, earlier. Phylogenetic analyses this study suggested that the migratory locusts from the northeast Chinese population might have migrated and settled in Haenam-gun in Korea. Moreover, another northeast Chinese population might have migrated to Muan-gun in Korea though Sakhalin, Russia and Hokkaido, Japan. However, the possibility that the migratory locusts moved from northeast China might be isolated from each other in Korea, and that the Muan population might migrate to Japan cannot be excluded.

Blue Light Photosensitization in Mitochondrial Membrane of Plant Cells (식물세포 미토콘드리아막에서 일어나는 청색광 Photosensitization)

  • Kim, Kyung-Hyun;Kim, Jong-Pyung;Jung, Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.2
    • /
    • pp.94-100
    • /
    • 1987
  • Plant mitochondria, irradiated with blue-colored $sunlight(350{\sim}500nm)$ under aerobic and anaerobic conditions, were assayed as to the electron transfer activity of respiratory enzyme system, and compared with those irradiated with orange-colored light(white sunlight minus blue-colored light). The respiratory activity of mitochondria was most seriousely inhibited by illumination with blue-colored light under aerobic condition. Deaeration of mitochondrial suspension resulted in substantial decrease of the photoinhibition by blue-colored light. Meanwhile, orange-colored light demonstrated much less effectiveness-almost ineffectiveness-in causing the inhibition of mitochondrial respiration system. The results of enzymatic assay revealed a strong possibility that FMN in NDH and heme group at least in cytochrome c oxidase, but not FAD in SDH, are the photodynamic sensitizers in mitochondrial inner membrane. Also worthwhile to note is the significant difference from the others of SDH in its photoinhibitory response to the light quality of visible light; that the inhibition of SDH by irradiation was not affected by atmospheric condition and that orange-colored light gave rise to considerable extents of inhibition to the enzyme. This observation was tentatively interpreted in terms of photosensitized reaction not involving molecular oxygen possibly catalyzed by Fe-S centers in the enzyme. The superoxide production and the membrane peroxidation of mitochondria under various treatments also indicated that there was blue-light photodynamic reaction in mitochondria involving active oxygens.

  • PDF

Purification and Characterization of Mitochondrial Malate Dehydrogenase during Ovarian Development in Aedes aegypti L. (Aedes aegypti L. 난성숙과정중 생성되는 Mitochondrial Malate Dehydrogenase의 정제 및 특성)

  • 김인규;이강석;정규회;박영민;성기창
    • Korean journal of applied entomology
    • /
    • v.34 no.3
    • /
    • pp.181-190
    • /
    • 1995
  • Malate dehydrogenase in the mosquito ovary after a blood meal, Aedes aegypti, was purified and characterized. MDH purification steps involved DEAE-Sepharose, S-Sepharose and Cibacron blue affinity chromatography. The purified MDH was 70,000 daltons in molecular weight and was a homodimer consisting of tow identical subunits. Optimal activity of purified MDH was obtained pH 9.0-9.2 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With obtained pH 9.0-92 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With malate as substrate, purified mitochondrial MDH (1.28$\times$${10}^{-4}$ M) had lower Km value than cytoplasmic MDH (8.92x${10}^{-3}$ M). MDH activity was inhibited by citrate, $\alpha$-ketoglutarate, and ATP. Inhibition of MDH activity by ATP and citrate was less in malate-oxaloacetate reaction and in oxaloacetate-malate reaction. MDH activity was completely inhibited by ATP in oxaloacetate-malate reaction and not inhibited by citrate in malate-oxaloacetate reaction. Temporal activity change of MDH is similar to that of isocitrate dehydrogenase in the ovary after blood feeding; their activities in the ovary began to rise at 18 hours after a blood meal, and reached at the maximal level at 48 hours.

  • PDF