• Title/Summary/Keyword: Mitochondrial DNA

Search Result 1,024, Processing Time 0.024 seconds

PCR-RFLP for the Identification of Mammalian Livestock Animal Species

  • Han, Sang-Hyun;Park, Seon-Mi;Oh, Hong-Shik;Kang, Geunho;Park, Beom-Young;Ko, Moon-Suck;Cho, Sang-Rae;Kang, Yong-Jun;Kim, Sang-Geum;Cho, In-Cheol
    • Journal of Embryo Transfer
    • /
    • v.28 no.4
    • /
    • pp.355-360
    • /
    • 2013
  • Precise, rapid and simple methods for species identification in animals are among the most important techniques in the livestock industry and research fields including meat classification. In this study, polymerase chain reaction (PCR) based molecular identification using inter species polymorphisms were examined by PCR-restriction fragment length polymorphism (RFLP) analysis for mitochondrial DNA (mtDNA) cytochrome b (CYTB) gene sequences among four mammalian livestock animals (cattle, horse, goat and pig). The results from PCR-RFLP analysis using the AluI restriction enzyme were also provided for the species-specific band patterns among CYTB gene sequences in these four species. The AluI-digestion for CYTB genes provided interesting migration patterns differentially displayed according to each species. Cattle and horse had one AluI-recognition site at different nucleotide positions and their AluI-digested fragments showed different band patterns on the gels. Pig had two AluI-recognition sites within the amplified CYTB sequences and produced three bands on the gels. Goat had no AluI-recognition site and was located at the same position as the uncut PCR product. The results showed the species-specific band patterns on a single gel among the four livestock animal species by AluI-RFLP. In addition, the results from blind tests for the meat samples collected from providers without any records showed the identical information on the species recorded by observing their phenotypes before slaughter. The application of this PCR-RFLP method can be useful and provide rapid, simple, and clear information regarding species identification for various tissue samples originating from tested livestock species.

Molecular Phylogenetic Study of the Barbel Steed (Hemibarbus labeo) in Seomjin River of Korea (한국 섬진강산 누치(Hemibarbus labeo)의 분자 계통유전학적 연구)

  • Park, Kiyun;Lee, Wan-Ok;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.221-230
    • /
    • 2019
  • Barbel steed (Hemibarbus labeo) is a small freshwater fish species as semi-bottom dwellers distributed in eastern Asia. We carried out characterization of the cytochrome c oxidase subunit I (COI) gene from the mitochondrial DNA of H. labeo in the Sumjin River to identify the phylogenetic location of H. labeo in the genus Hemibarbus and Cyprinidae. Multiple alignment of the 577 bp COI sequence revealed high sequence homology (99~100%) between Seomjin River H. labeo. The nucleotide sequence similarity between H. labeo (HD1) and H. mylodon was 88.91% and that of H. longirostis was 88.81% among the three species found in Korea. In addition, the nucleotide sequence similarities of H. maculatus, H. meditus, H. umbrifer and H. barbus showed 98.97%, 97.20%, 96.87% and 98.85%, respectively. Phylogenetic analysis on seven species of the genus Hemibarbus showed that the H. labeo collected in this study formed two clades. One of which consisted of Hadong, Imsil, Kangjin. The other one formed a step with HD2, HD8 and HD9 of Hadong and the H. labeo reported in Busan, Asan and Seoul, Korea. Phylogenetic position of the H. labeo among Cyprinidae showed 0.143 for the evolutionary distance from Zacco platypus and 0.006 for the H. maculatus. In addition, the genetic position of the H. labeo among 28 species of Cyprinidae was found to be located in Group I, including Gobioninae fishes. The results of this study will provide key genetic information for the taxonomic comparison in Cyprinidae and study of model fish for pollution monitoring in freshwater environments.

Mitochondrial DNA variation and phylogeography of Old World camels

  • Ming, Liang;Siren, Dalai;Yi, Li;Hai, Le;He, Jing;Ji, Rimutu
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.525-532
    • /
    • 2021
  • Objective: Old World camels are a valuable genetic resource for many countries around the world due to their adaptation to the desert environment. At present, Old World camels have encountered the challenge of unprecedented loss of genetic resources. Through our research, we would reveal the population structure and genetic variation in Old World camel populations, which provides a theoretical basis for understanding the germplasm resources and origin and evolution of different Old World camel populations. Methods: In the present study, we assessed mtDNA control region sequences of 182 individuals from Old World camels to unravel genetic diversity, phylogeography, and demographic dynamics. Results: Thirty-two haplotypes confirmed by 54 polymorphic sites were identified in the 156 sequences, which included 129 domestic and 27 wild Bactrian camels. Meanwhile, 14 haplotypes were defined by 47 polymorphic sites from 26 sequences in the dromedaries. The wild Bactrian camel population showed the lowest haplotype and nucleotide diversity, while the dromedaries investigated had the highest. The phylogenetic analysis suggests that there are several shared haplotypes in different Bactrian camel populations, and that there has been genetic introgression between domestic Bactrian camels and dromedaries. In addition, positive values of Tajima's D and Fu's Fs test demonstrated a decrease in population size and/or balancing selection in the wild Bactrian camel population. In contrast, the negative values of Tajima's D and Fu's Fs test in East Asian Bactrian camel populations explained the demographic expansion and/or positive selection. Conclusion: In summary, we report novel information regarding the genetic diversity, population structure and demographic dynamics of Old World camels. The findings obtained from the present study reveal that abundant genetic diversity occurs in domestic Bactrian camel populations and dromedaries, while there are low levels of haplotype and nucleotide diversity in the wild Bactrian camel population.

Population Structure of Korean Paraplagusia japonica (Cynoglossidae) Based on Morphological and Molecular Markers (한국산 흑대기 Paraplagusia japonica (참서대과)의 형태 및 분자 마커에 의한 집단구조)

  • Park, Gyeong Hyun;Kim, Jin-Koo
    • Korean Journal of Ichthyology
    • /
    • v.34 no.2
    • /
    • pp.73-85
    • /
    • 2022
  • The cynoglossid fishes are popular for food in the world including Korea, China and Japan, and among them, Paraplagusia japonica lives all over the sea of Korea. In order to establish appropriate management measure, it is essential to clarify population structure of P. japonica from the morphological and molecular perspectives. We collected a total of 132 individuals of P. japonica from six localities in Korea between 2008 and 2021. Canonical discriminant analysis results showed that the West Sea population (Incheon) slightly differed from the South (Tongyeong, Busan) and East Sea populations (Pohang, Donghae, Sokcho). Similar results were also shown in Kruskal-Wallis test of meristic characters. Furthermore, neighbor-joining and maximum-likelihood trees based on 849 base pairs of mitochondrial DNA cytochrome b sequences showed that P. japonica was divided into two lineages (designated as A and B) with a high significance (Φst=0.0781, P<0.001). Interestingly, however, the two lineages in the admixture area (South-East Sea) were not different in morphological characters. Our results suggest that P. japonica had undergone differentiated history during the Late Pleistocene, but secondary contact may occur at the admixture area.

Cellular Aging Inhibitory Effect of Perilla Leaf Extract on D-Galactose Induced C2C12 Myoblasts (D-갈락토스 유도 C2C12 근원세포에 대한 자소엽 추출물의 세포 노화 억제 효과)

  • Song-Mi Park;Sung-Woo Cho;Yung-Hyun Choi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.34 no.2
    • /
    • pp.15-28
    • /
    • 2024
  • Objectives We used the D-galactose (D-gal) induced C2C12 myoblast senescence model to investigate whether ethanol extract of Perilla. fructescens leaves (EEPF) could delay cellular senescence and regulate related mechanisms. Methods C2C12 myogenic cells were cultured in an incubator under 37 ℃ and 5% CO2 conditions. EEPF, dried perilla leaves were pulverized and extracted at 1:10 (v/v) at 50 ℃ for 4 hours. Cell counting kit-8 and western blot analysis was performed. Annexin V-FITC apoptosis detection kit and DAPI staining was applied. Catalase (CAT), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and malondialdehyde analysis kits were used. To measure the level of reactive oxygen species generation, staining and flow cytometry was used. To analyze the mitochondrial activity, membrane potential changes were measured using JC-1. 𝛽-gal activity was analyzed using SA-𝛽-gal staining solution, and DNA damage was analyzed by using 𝛾-H2AX. Quantikine ELISA kit was used to analyze inflammatory cytokine production. Results According to the results of this study, EEPF significantly alleviated the decrease in cell viability in C2C12 cells treated with D-gal and suppressed the decrease in the expression of proliferating cell nuclear antigen. EEPF also markedly blocked D-gal-induced C2C12 cell apoptosis and restored reduced activity of CAT, GSH-Px, T-AOC, SOD. In addition, EEPF suppressed the decrease in 𝛽-galactosidase activity, the induction of DNA damage and the increase in expression of senescence-associated secretory phenotype proteins such as p16, p53 and p21 in D-gal-treated C2C12 cells. Furthermore, EEPF significantly attenuated D-gal-induced production and expression of inflammatory cytokines such as interleukin (IL)-6 and IL-18. Conclusions The results of this study indicate that EEPF can be used as a potential candidate for the prevention and treatment of muscle aging.

Molecular Identification and First Morphological Description of Larvae and Juveniles of Neosalanx anderssoni (Salangidae) Collected from the Southwestern Sea of Korea (한국 서해 남부해역에서 채집된 도화뱅어, Neosalanx anderssoni (뱅어과) 자치어의 분자 동정 및 첫 형태기재)

  • Seo-Yeon Koo;Se-Hun Myoung;Jin-Koo Kim
    • Korean Journal of Ichthyology
    • /
    • v.36 no.1
    • /
    • pp.94-100
    • /
    • 2024
  • During ichthyoplankton survey in the southwestern sea of Korea, we collected six individuals of noodlefish larvae and juveniles between April and May 2023. They were identified as Neosalanx anderssoni by mitochondrial DNA cytochrome c oxidase subunit I or 16S ribosomal RNA sequences, and their external morphological traits were described for the first time. All six individuals have a slender and elongated body. When preflexion and flexion larval stages (10.24 mm notochord length, NL and 15.47 mm total length, TL, respectively), oval-shaped black melanophores were distributed in a row along the ventral side of the gut. However, when postflexion larval and juvenile stages (23.58~25.90 mm TL, and 29.20~31.26 mm TL, respectively), melanophores on the ventral side of the gut were disappeared, and dark spot-shaped melanophores appeared along the dorsal side of the gut in a single row. Also, from the postflexion larval stage (23.58 mm TL), two large black spots began to appear symmetrically on the caudal fin. Our results suggest that N. anderssoni may use coastal area as spawning and/or nursery ground unlike previous study (Kim and Park, 2002).

Development and Validation of Multiplex Polymerase Chain Reaction to Determine Squid Species Based on 16s rRNA Gene (오징어류 종 판별을 위한 다중 유전자 검사법 개발 및 검증)

  • Kim, Hyunsu;Seo, Yong Bae;Choi, Seong-Seok;Kim, Jin-Hee;Shin, Jiyoung;Yang, Ji-Young;Kim, Gun-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • In this study, single PCR and multiplex PCR tests were examined for identification of four types of squid species (giant squid, cuttlefish, octopus, beka squid) purchased from fish market as well as aquatic processed products in Busan. To design the specific primers against each species, the nucleotide sequences of the mitochondrial 16s rRNA gene of Architeuthis dux, Todarodes pacificus, Enteroctopus dofleini, Enteroctopus megalocyathus, Uroteuthis chinensis, Uroteuthis duvauceli, Uroteuthis edulis groups were analyzed for the identification of each species registered in the GeneBank (www.ncbi.nlm.nih.gov) and have been used for comparative analysis. In order to obtain the size variation of amplified fragments on multiplex PCR, we designed KOJ-F, OJ-F, OCT-F, HAN-F, ALLR primers for each species. The optimal PCR conditions and primers were selected for four types of squid species to determine target base sequences in its PCR products. In the case of single PCR, giant squid was only amplified by KOJ-F/ALLR primer; cuttlefish was only amplified by OJ-F/ALLR primer; octopus was only amplified by OCT-F/ALLR primer; and beka squid was only amplified by HAN-F/ALLR primer. For multiplex PCR, the mixture of four kinds of genomic DNA (giant squid, cuttlefish, octopus, beka squid) been prepared as a template and used together with the mixture of KOJ-F/OJ-F/OCT-F/HAN-F/ALLR primers in the reaction. By the multiplex PCR, it is confirmed that four samples are correspond to multiple simultaneous amplicon. Finally, we validated the established methods of multiplex PCR in the aquatic processed products. Although the mitochondrial 16s rRNA primers used in this study was useful as a marker for detection of each species among them, the study indicated that the established multiplex PCR method can be more useful tool for monitoring the processed products.

Apoptosis of Human Jurkat T Cells Induced by the Methylene Chloride Extract from the Stems of Zanthoxylum schinifolium is Associated with Intrinsic Mitochondria-Dependent Activation of Caspase Pathway (인체 급성백혈병 Jurkat T 세포에 있어서 Zanthoxylum schinifolium 줄기의 methylene chloride 추출물에 의해 유도되는 세포자살기전 규명)

  • Jun, Do-Youn;Woo, Mi-Hee;Park, Hae-Sun;Kim, Jun-Seok;Rhee, In-Koo;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1499-1506
    • /
    • 2008
  • To examine antitumor activity of the edible plant Zanthoxylum schinifolium, the cytotoxic effect of various organic solvent extracts of its stems on human acute leukemia Jurkat T cells was investigated. Among these extracts such as methanol extract (SS-7), methylene chloride extract (SS-8), ethyl acetate extract (SS-9), n-butanol extract (SS-10), and residual fraction (SL-11), SS-8 exhibited the most cytotoxic activity against Jurkat T cells. The methylene chloride extract (SS-8) possessed the apoptogenic activity capable of inducing sub-G1 peak along with apoptotic DNA fragmentation in Jurkat T cells. Western blot analysis revealed that SS-8 induced apoptosis via mitochondrial cytochrome c release into cytoplasm, subsequent activation of caspase-9 and caspase-3, and cleavage of PARP, which could be blocked by overexpression of Bcl-xL. Jurkat T cell clone I2.1 $FADD^{-/-}$) and Jurkat T cell clone I9.2 (caspase-$8^{-/-}$ were as sensitive as was the wild-type Jurkat T cell clone A3 to the cytotoxic effect of SS-8, suggesting no contribution of Fas/FasL system to the SS-8-mediated apoptosis. The GC-MS analysis of SS-8 showed that it was composed of 16 ingredients including 9,12-octadecanoic acid (18.62%), 2,4-dihydro-5-methyl-4- (1-methylethylidene)- 2-(4-nitrophenyl)-3H- pyrazol-3-one (14.97%), hexadecanoic acid (14.23%), (z,z)-6,9-pentadecadien- 1-ol (13.73%), 5,6-dimethoxy-2-methyl benzofuran (10.95%), and 4-methoxy-2-methylcinnamic acid (5.38%). These results demonstrate that the methylene chloride extract of the stems of Z. schinifolium can induce apoptotic cell death in Jurkat T cells via intrinsic mitochondria-dependent caspase cascade regulated by Bcl-xL without involvement of the Fas/FasL system.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

Synthetic Chenodeoxycholic Acid Derivative HS-1200-Induced Apoptosis of Human Oral Squamous Carcinoma Cells (합성 Chenodeoxycholic Acid 유도체 HS-1200이 유도한 사람구강 편평상피암종세포 세포자멸사 연구)

  • Kim, In-Ryoung;Sohn, Hyeon-Jin;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo;Choi, Won-Chul;Ko, Myung-Yun;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.3
    • /
    • pp.251-261
    • /
    • 2007
  • Bile acids and synthetic its derivatives induced apoptosis in various kinds of cancer cells and anticancer effects. Previous studies have been reported that the synthetic chenodeoxycholic acid (CDCA) derivatives showed apoptosis inducing activity on various cancer cells in vitro. It wasn't discovered those materials have apoptosis induced effects on YD9 human oral squamous carcinoma cells. The present study was done to examine the synthetic bile acid derivatives(HS-1199, HS-1200) induced apoptosis on YD9 cells and such these apoptosis events. We administered them in culture to YD9 cells. Tested YD9 cells showed several lines of apoptotic manifestation such as activation of caspase-3, degradation of DFF, production of poly (ADP-ribose) polymerase(PARP) cleavage(HS-1200 only), DNA degradation(HS-1200 only), nuclear condensation, inhibition of proteasome activity, reduction of mitochondrial membrane potential(HS-1200 only) and the release of cytochrome c and AIF to cytosol. Between two synthetic CDCA derivatives, HS-1200 showed stronger apoptosis-inducing effect than HS-1199. Therefore HS-1200 was demonstrated to have the most efficient antitumor effect. Taken collectively, we demonstrated that a synthetic CDCA derivative HS-1200 induced caspases-dependent apoptosis via mitochondrial pathway in human oral sqauamous carcinoma cells in vitro. Our data therefore provide the possibility that HS-1200 could be considered as a novel therapeutic strategy for human orall squamous carcinoma from its poweful apoptosis-inducing activity.