Browse > Article
http://dx.doi.org/10.35399/ISK.34.2.1

Population Structure of Korean Paraplagusia japonica (Cynoglossidae) Based on Morphological and Molecular Markers  

Park, Gyeong Hyun (Biotechnology Research Division, National Fisheries Research and Development Institute)
Kim, Jin-Koo (Division of Fisheries and Life Sciences, Pukyong National University)
Publication Information
Korean Journal of Ichthyology / v.34, no.2, 2022 , pp. 73-85 More about this Journal
Abstract
The cynoglossid fishes are popular for food in the world including Korea, China and Japan, and among them, Paraplagusia japonica lives all over the sea of Korea. In order to establish appropriate management measure, it is essential to clarify population structure of P. japonica from the morphological and molecular perspectives. We collected a total of 132 individuals of P. japonica from six localities in Korea between 2008 and 2021. Canonical discriminant analysis results showed that the West Sea population (Incheon) slightly differed from the South (Tongyeong, Busan) and East Sea populations (Pohang, Donghae, Sokcho). Similar results were also shown in Kruskal-Wallis test of meristic characters. Furthermore, neighbor-joining and maximum-likelihood trees based on 849 base pairs of mitochondrial DNA cytochrome b sequences showed that P. japonica was divided into two lineages (designated as A and B) with a high significance (Φst=0.0781, P<0.001). Interestingly, however, the two lineages in the admixture area (South-East Sea) were not different in morphological characters. Our results suggest that P. japonica had undergone differentiated history during the Late Pleistocene, but secondary contact may occur at the admixture area.
Keywords
Paraplagusia japonica; Cynoglossidae; population structure; cytochrome b; morphometric analysis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Han, Z., T. Yanagimoto, Y. Zhang and T. Gao. 2012. Phylogeography study of Ammodytes personatus in Northwestern Pacific: Pleistocene isolation, temperature and current conducted secondary contact. PLoS ONE, 7: e37425. https://doi.org/10.1371/journal.pone.0037425.   DOI
2 He, L., T. Mukai, C.K. Hou, Q. Ma and J. Zhang. 2015. Biogeographical role of the Kuroshio Current in the amphibious mudskipper Periophthalmus modestus indicated by mitochondrial DNA data. Sci. Rep., 5: 1-12. https://doi.org/10.1038/srep15645.   DOI
3 Hewitt, G. 2000. The genetic legacy of the Quaternary ice ages. Nature, 405: 907-913. https://doi.org/10.1038/35016000.   DOI
4 Hubbs, C.L. 1922. Variations in the number of vertebrae and other meristic characters of fishes correlated with the temperature of water during development. Am. Nat., 56: 360-372. https://doi.org/10.1086/279875.   DOI
5 Hutchings, J.A. and D.J. Fraser. 2008. The nature of fisheries and farming induced evolution. Mol. Ecol., 17: 294-313. https://doi.org/10.1111/j.1365-294X.2007.03485.x.   DOI
6 Jang, S.H., J.W. Lee and J.K. Kim. 2019. Molecular and morphometric variations in the sea raven, Hemitripterus villosus from Korea, with its implication on fisheries management. Ocean Sci. J., 54: 419-433. https://doi.org/10.1007/s12601-019-0021-y.   DOI
7 Kai, Y., K. Sakai, J.W. Orr and T. Nakabo. 2011. Secondary contact in the Sea of Japan: the case of the Careproctus rastrinus species complex (Liparidae). Ichthyol. Res., 58: 366-369. https://doi.org/10.1007/s10228-011-0226-2.   DOI
8 Kato, S., S. Arakaki, K. Kikuchi and S. Hirase. 2020. Complex phylogeographic patterns in the intertidal goby Chaenogobius annularis around Kyushu Island as a boundary zone of three different seas. Ichthyol. Res., 68: 86-100. https://doi.org/10.1007/s10228-020-00772-4.   DOI
9 Kim, E.A. 2012. Morphological and genetic variation of geographic populations of mud skipper, Scartelaos gigas and Boleophthalmus pectinirostris from Korea. Pukyong National Univ. Press, Busan, Korea, pp. 1-73.
10 Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyo-Hak Press, Seoul, Korea, p. 615.
11 Kim, J.K. 2009. Diversity and conservation of Korean marine fishes. Korean J. Ichthyol., 21: 52-62.
12 Yamada, U., M. Tokimura, H. Horikawa and T. Nakabo. 2007. Fishes and fisheries of the East China and Yellow Seas. Tokai Univ. Press, Tokyo, Japan, p. 1139.
13 Vladykov, V.D. 1934. Environmental and taxonomic characters of fishes. Trans. Roy. Can. Inst., 20: 99-140.
14 Waldman, J.R. 2005. Definition of Stocks. In: Cadrin S.X., K.D. Friedland and J.R. Waldman (eds.), Stock Identification Methods. Academic Press, Cambridge, U.S.A., pp. 7-16.
15 Wright, S. 1978. Evolution and the genetics of populations: variability within and among natural populations. Chicago Univ. Press, Chicago, U.S.A., p. 590.
16 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120. https://doi.org/10.1007/BF01731581.   DOI
17 Zar, J.H. 1999. Biostatistical analysis. Pearson Prentice Hall Press, New Jersey, U.S.A., p. 960.
18 Umino, T., T. Kajihara, H. Shiozaki, T. Ohkawa, D.S. Jeong and K. Ohara. 2009. Wild stock structure of Girella punctata in Japan revealed shallow genetic differentiation but subtle substructure in subsidiary distributions. Fish. Sci., 75: 909-919. https://doi.org/10.1007/s12562-009-0118-9.   DOI
19 Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673.   DOI
20 Yoon, M.G., J.Y. Jung and D.S. Kim. 2013. Genetic diversity and gene flow patterns in Pollicipes mitella in Korea inferred from mitochondrial DNA sequence analysis. Fish. Aquat. Sci., 16: 243-251. https://doi.org/10.5657/FAS.2013.0243.   DOI
21 Reiss, H., G. Hoarau, M. Dickey-Collas and W.J. Wolff. 2009. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish. Fish., 10: 361-395. https://doi.org/10.1111/j.1467-2979.2008.00324.x.   DOI
22 Wilson, A.C., R.L. Cann, S.M. Carr, M. George, U.B. Gyllensten, K.M. Helm-Bychowski, R.G. Higuchi, S.R. Palumbi, E.M. Prager, R.D. Sage and M. Stoneking. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc., 26: 375-400. https://doi.org/10.1111/j.1095-8312.1985.tb02048.x.   DOI
23 Li, W.H. 1997. Molecular Evolution. Sinauer Associates Press, Massachusetts, U.S.A., 432 pp.
24 Masuda, H., K. Amaoka, C. Araga, T. Uyeno and T. Yoshino. 1984. The fishes of the Japanese Archipelago. Vol. 1. Tokai Univ. Press, Tokyo, Japan, p. 437.
25 Myoung, S.H., T.W. Ban and J.K. Kim. 2016. Population structure of Liparis tanakae (PISCES, Liparidae) from Korea based on morphological and molecular traits. Korean J. Fish. Aquat. Sci., 49: 198-207. https://doi.org/10.5657/KFAS.2016.0198.   DOI
26 Ni, I.H. and K.Y. Kwok. 1999. Marine fish fauna in Hong Kong waters. Zool. Stud., 38: 130-152.
27 Santos, S., T. Hrbek, I.P. Farias, H. Schneider and I. Sampaio. 2006. Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep genetic divergence without morphological change. Mol. Ecol., 15: 4361-4373.   DOI
28 Shen, K.N., B.W. Jamandre, C.C. Hsu, W.N. Tzeng and J.D. Durand. 2011. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally distributed flathead mullet Mugil cephalus. BMC Evol. Biol., 11: 83. https://doi.org/10.1186/1471-2148-11-83.   DOI
29 Swain, D.P. and C.J. Foote. 1999. Stocks and chameleons: the use of phenotypic variation in stock identification. Fish. Res., 43: 113-128. https://doi.org/10.1016/S0165-7836(99)00069-7.   DOI
30 Villaluz, A.C. and H.R. Maccrimmon. 1988. Meristic variations in milkfish Chanos chanos from Philippine waters. Mar. Biol., 97: 145-150. https://doi.org/10.1007/BF00391254.   DOI
31 Kim, J.K., R. Doiuchi and T. Nakabo. 2006a. Molecular and morphological differences between two geographic populations of Salanx ariakensis (Salangidae) from Korea and Japan. Ichthyol. Res., 53: 52-62. https://doi.org/10.1007/s10228-005-0315-1.   DOI
32 Silva, A. 2003. Morphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western Mediterranean. ICES J. Mar. Sci., 60: 1352-1360. https://doi.org/10.1016/S1054-3139(03)00141-3.   DOI
33 Harpending, R.C. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol., 66: 591-600.
34 Imbrie, J., E.A. Boyle, S.C. Clemens, A. Duffy, W.R. Howard, G. Kukla, J. Kutzbach, D.G. Martinson, A. Mclntyre, A.C. Mix, B. Molfino, J.J. Morley, L.C. Peterson, N.G. Pisias, W.L. Prell, M.E. Raymo, N.J. Shackletons and J.R. Toggweiler. 1992. On the structure and origin of major glaciation cycles. I. Linear responses to Milankovich forcing. Paleoceanogr., 7: 701-738.   DOI
35 Kaiser, T.S., D. Neumann, D.G. Heckel and T.U. Berendonk. 2010. Strong genetic differentiation and postglacial origin of populations in the marine midge Clunio marinus (Chironomidae, Diptera). Mol. Ecol., 19: 2845-2857. https://doi.org/10.1111/j.1365-294X.2010.04706.x.   DOI
36 Kim, I.S. and Y. Choi. 1994. A taxonomic revision of the family Cynoglossidae (Pisces, Pleuronectiformes) from Korea. Bull. Korean Fish. Soc., 27: 803-813.
37 Kim, J.K., J.H. Park, Y.S. Kim, Y.H. Kim, H.J. Hwang, S.J. Hwang, S.I. Lee and T.I. Kim. 2008. Geographic variations in Pacific sand eels Ammodytes personatus (Ammodytidae) from Korea and Japan using multivariate morphometric analysis. J. Ichthyol., 48: 904-910. https://doi.org/10.1134/S003294520810007X.   DOI
38 Hong, S.E., J.K. Kim, J.N. Yu, K.Y. Kim, C.I. Lee, K.E. Hong, K.Y. Park and M.G. Yoon. 2012. Genetic variation in the Asian shore crab Hemigrapsus sanguineus in Korean coastal waters as inferred from mitochondrial DNA sequences. Fish. Aquat. Sci., 15: 49-56. https://doi.org/10.5657/FAS.2012.0049.   DOI
39 Bowen, B.W., A. Muss, L.A. Rocha and W.S. Grant. 2006. Shallow mtDNA coalescence in Atlantic pygmy angelfishes (Genus Centropyge) indicates a recent invasion from the Indian Ocean. J. Hered., 97: 1-12. https://doi.org/10.1093/jhered/esj006.   DOI
40 Kim, J.K., S.E. Bae, S.J. Lee and M.G. Yoon. 2017. New insight into hybridization and unidirectional introgression between Ammodytes japonicus and Ammodytes heian (Trachiniformes, Ammodytidae). PLoS ONE, 12: e0178001. https://doi.org/10.1371/journal.pone.0178001.   DOI
41 An, H.S., H.W. Kang, H.S. Han, J.Y. Park, J.I. Myeong and C.M. An. 2014. Population genetic structure of the tongue sole (Cyno-glossus semilaevis) in Korea based on multiplex PCR assays with 12 polymorphic microsatellite markers. Genes. Genom., 36: 539-549. https://doi.org/10.1007/s13258-014-0190-0.   DOI
42 Evans, R.D., L. Van Herwerden, G.R. Russ and A.J. Frisch. 2010. Strong genetic but not spatial subdivision of two reef fish spe-cies targeted by fishers on the Great Barrier Reef. Fish. Res., 102: 16-25. https://doi.org/10.1016/j.fishres.2009.10.002.   DOI
43 Grant, W.S. and B.W. Bowen. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered., 89: 415-426. https://doi.org/10.1093/jhered/89.5.415.   DOI
44 Haddon, M. and T.J. Willis. 1995. Morphometric and meristic comparison of orange roughy (Hoplostethus atlanticus, Trachichthyidae) from the Puysegur Bank and Lord Howe Rise, New-Zealand, and its implications for stock structure. Mar. Biol., 123: 19-27. https://doi.org/10.1007/BF00350319.   DOI
45 Choi, K.H., E.Y. Chung and G.M. Park. 2013. Phylogenetic relationship and DNA polymorphism of Boleophthalmus pectinirostris and Scartelaos gigas (Teleostei: Gobiidae) of Korea. Korean J. Ichthyol., 25: 149-156.
46 Liu, S.Y.V., T. Kokita and C.F Dai. 2008. Population genetic structure of the neon damselfish (Pomacentrus coelestis) in the north-western Pacific Ocean. Mar. Biol., 154: 745-753.   DOI
47 Kim, J.K., J.Y. Park and Y.S. Kim. 2006b. Genetic diversity, relationships and demographic history of three geographic populations of Ammodytes personatus (Ammodytidae) from Korea inferred from mitochondrial DNA control region and 16S rRNA sequence data. Kor. J. Genet., 28: 343-351.
48 Brown, W.M., E.M. Prager, A. Wang and A.C. Wilson. 1982. Mito-chondrial DNA sequences of primates: tempo and mode of evolution. J. Mol. Evol., 18: 225-239. https://doi.org/10.1007/BF01734101.   DOI
49 Buonaccorsi, V.P., J.R. McDowell and J.E. Graves. 2001. Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol. Ecol., 10: 1179-1196. https://doi.org/10.1046/j.1365-294X.2001.01270.x.   DOI
50 Liu, J.X., T.X. Gao, S.F. Wu and Y.P. Zhang. 2007. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck and Schlegel, 1845). Mol. Ecol., 16: 275-288. https://doi.org/10.1111/j.1365-294X.2006.03140.x.   DOI
51 Minami, T. 1982. The early life history of a tongue fish Paraplagusia japonica. Bull. Jpn. Soc. Sci. Fish., 48: 1041-1046.   DOI
52 Muss, A., D.R. Robertson, C.A. Stepien, P. Wirtz and B.W. Bowen. 2001. Phylogeography of Ophioblennius: The role of ocean currents and geography in reef fish evolution. Evol., 55: 561-572. https://doi.org/10.1111/j.0014-3820.2001.tb00789.x.   DOI
53 Myoung, S.H. and J.K. Kim. 2014. Genetic diversity and population structure of the gizzard shad, Konosirus punctatus (Clupeidae, Pisces), in Korean waters based on mitochondrial DNA control region sequences. Genes. Genom., 36: 591-598. https://doi.org/10.1007/s13258-014-0197-6.   DOI
54 Rogers, A.R. and H. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol., 9: 552-569. https://doi.org/10.1093/oxfordjournals.molbev.a040727.   DOI
55 Rozas, J., A. Ferrer-Mata, J.C. Sanchez-DelBarro, S. Guirao-Rico, P. Librado, S.E. Ramos-Onsins and A. Sanchez-Gracia. 2017. DnaSP v6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol., 34: 3299-3302. https://doi.org/10.1093/molbev/msx248.   DOI
56 Santos, S., H. Schneider and I. Sampaio. 2003. Genetic differentiation of Macrodon ancylodon (Sciaenidae, Perciformes) populations in Atlantic coastal waters of South America as revealed by mtDNA analysis. Genet. Mol. Biol., 26: 151-161.   DOI
57 Bartlett, S.E. and W.S. Davidson. 1991. Identification of Thunnus tuna species by the polymerase chain reaction and direct sequence analysis of mitochondrial cytochrome b genes. Can. J. Fish. Aquat. Sci., 48: 309-317. https://doi.org/10.1139/f91-043.   DOI
58 Colborn, J., R.E. Crabtree, J.B. Shaklee, E. Pfeiler and B.W. Bowen. 2001. The evolutionary enigma of bonefishes (Albula spp.): Cryptic species and ancient separations in a globally distributed shorefish. Evol., 55: 807-820. https://doi.org/10.1111/j.0014-3820.2001.tb00816.x.   DOI
59 Darriba, D., G.L. Taboada, R. Doallo and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods, 9: 772. https://doi.org/10.1038/nmeth.2109.   DOI
60 Avise, J.C. 1994. Molecular markers, natural history and evolution. Chapman and Hall Press, New York, U.S.A., p. 511.
61 Excoffier, L., P.E. Smouse and J.M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genet., 131: 479-491. https://doi.org/10.1093/genetics/131.2.479.   DOI
62 Excoffier, L. and H.E. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x.   DOI
63 Schneider, S. and L. Excoffier. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genet., 152: 1079-1089. https://doi.org/10.1093/genetics/152.3.1079.   DOI
64 Nakabo, T. and U. Yamada. 2013. Family Cynoglossidae. In: Nakabo, T. (ed.), Fishes of Japan with pictorial keys to the species, 3rd ed. Tokai Univ. Press, Tokyo, Japan, p. 1388.
65 Park, G.M. and H.B. Song. 2010. Phylogenetic divergence in the south torrent catfish, Liobagrus mediadiposalis (Pisces; Amblycipitidae) of Korea. J. Fisher. Soc. Taiwan, 37: 173-181. https://doi.org/10.29822/JFST.201009.0002.   DOI
66 Peng, S., Z. Shi, J. Hou, W. Wang, F. Zhao and H. Zhang. 2009. Genetic diversity of silver pomfret (Pampus argenteus) populations from the China Sea based on mitochondrial DNA control region sequences. Biochem. Syst. Ecol., 37: 626-632.   DOI
67 Shen, S.C. 1983. Cynoglossid fishes (Pleuronectiformes: Cynoglossidae) of Taiwan. Bull. Inst. Zool. Academia Sinica, 22: 105-118.
68 Kim, W.J., K.K. Kim, H.S. Han, B.H. Nam, Y.O. Kim, H.J. Kong, J.K. Noh and M. Yoon. 2010. Population structure of the olive flounder (Paralichthys olivaceus) in Korea inferred from microsatellite marker analysis. J. Fish. Biol., 76: 1958-1971. https://doi.org/10.1111/j.1095-8649.2010.02638.x.   DOI
69 Kitamura, A. and K. Kimoto. 2006. History of the inflow of the warm Tsushima Current into the Sea of Japan between 3.5 and 0.8 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol., 236: 355-366. https://doi.org/10.1016/j.palaeo.2005.11.015.   DOI
70 Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35: 1547-1549. https://doi.org/10.1093/molbev/msy096.   DOI
71 Liu, J.X., T.X. Gao, Z.M. Zhuang, X.S. Jin, K. Yokogawa and Y.P. Zhang. 2006b. Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Mol. Phylogenet. Evol., 40: 712-723. https://doi.org/10.1016/j.ympev.2006.04.019.   DOI
72 Grant, W.S. and F.M. Utter. 1984. Biochemical population genetics of Pacific herring (Clupea pallasi). Can. J. Fish. Aquat. Sci., 41: 856-864. https://doi.org/10.1139/f84-102.   DOI
73 Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic. Acids. Symp. Ser., 41: 95-98.
74 Han, Z.Q., T.X. Gao, T. Yanagimoto and Y. Sakurai. 2008. Deep phylogeographic break among white croaker Pennahia argentata (Sciaenidae, Perciformes) populations in North-western Pacific. Fish. Sci., 74: 770-780. https://doi.org/10.1111/j.1444-2906.2008.01588.x.   DOI
75 Lindsey, C.C. 1988. Factors controlling meristic variation. In: Hoar, W.S. and D.J. Randall (eds.) Fish Physiology. Academic Press, Cambridge, U.S.A., pp. 197-234.
76 Liu, J.X., T.X. Gao, K. Yokogawa and Y.P. Zhang. 2006a. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol. Phylogenet. Evol., 39: 799-811. https://doi.org/10.1016/j.ympev.2006.01.009.   DOI
77 Kim, J.K., J.H. Ryu, H.J. Kwun, H.S. Ji, J.H. Park, S.H. Myoung, Y.S. Song, S.J. Lee, H.J. Yu, S.E. Bae, S.H. Jang and W.J. Lee. 2019. Distribution map of sea fishes in Korean peninsula. Ministry of Oceans and Fisheries, Korea Institute of Marine Science and Technology Promotion, and Pukyong National Univ. Press, Seocho and Busan, Korea, p. 486.