• 제목/요약/키워드: Mitochondria-targeting

검색결과 31건 처리시간 0.022초

Mitochondria-targeting theranostics

  • Kang, Han Chang
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.221-234
    • /
    • 2018
  • Background: Interest in subcellular organelle-targeting theranostics is substantially increasing due to the significance of subcellular organelle-targeting drug delivery for maximizing therapeutic effects and minimizing side effects, as well as the significance of theranostics for delivering therapeutics at the correct locations and doses for diseases throughout diagnosis. Among organelles, mitochondria have received substantial attention due to their significant controlling functions in cells. Main body: With the necessity of subcellular organelle-targeting drug delivery and theranostics, examples of mitochondria-targeting moieties and types of mitochondria-targeting theranostics were introduced. In addition, the current studies of mitochondria-targeting theranostic chemicals, chemical conjugates, and nanosystems were summarized. Conclusion: With the current issues of mitochondria-targeting theranostic chemicals, chemical conjugates, and nanosystems, their potentials and alternatives are discussed.

Gallic acid-mitochondria targeting sequence-H3R9 induces mitochondria-targeted cytoprotection

  • Bae, Yoonhee;Kim, Goo-Young;Jessa, Flores;Ko, Kyung Soo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.15-24
    • /
    • 2022
  • The development of selective targeting of drug molecules towards the mitochondria is an important issue related to therapy efficacy. In this study, we report that gallic acid (GA)-mitochondria targeting sequence (MTS)-H3R9 exhibits a dual role as a mitochondria-targeting vehicle with antioxidant activity for disease therapy. In viability assays, GA-MTS-H3R9 showed a better rescue action compared to that of MTS-H3R9. GA-MTS-H3R9 dramatically exhibited cell penetration and intercellular uptake compared to MTS and fit escape from lysosome release to the cytosol. We demonstrated the useful targeting of GA-MTS-H3R9 towards mitochondria in AC16 cells. Also, we observed that the antioxidant properties of mitochondrial-accrued GA-MTS-H3R9 alleviated cell damage by reactive oxygen species production and disrupted mitochondrial membrane potential. GA-MTS-H3R9 showed a very increased cytoprotective effect against anticancer activity compared to that of MTS-H3R9. We showed that GA-MTS-H3R9 can act as a vehicle for mitochondria-targeting and as a reagent for therapeutic applications intended for cardiovascular disease treatment.

Review of ginsenosides targeting mitochondrial function to treat multiple disorders: Current status and perspectives

  • Huang, Qingxia;Gao, Song;Zhao, Daqing;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • 제45권3호
    • /
    • pp.371-379
    • /
    • 2021
  • Mitochondrial dysfunction contributes to the pathogenesis and prognosis of many common disorders, including neurodegeneration, stroke, myocardial infarction, tumor, and metabolic diseases. Ginsenosides, the major bioactive constituents of Panax ginseng (P. ginseng), have been reported to play beneficial roles in the molecular pathophysiology of these diseases by targeting mitochondrial dysfunction. In this review, we first introduce the types of ginsenosides and basic mitochondrial functions. Then, recent findings are summarized on different ginsenosides targeting mitochondria and their key signaling pathways for the treatment of multiple diseases, including neurological disorders, cancer, heart disease, hyperglycemia, and inflammation are summarized. This review may explain the common targets of ginsenosides against multiple diseases and provide new insights into the underlying mechanisms, facilitating research on the clinical application of P. ginseng.

microRNA-200a-3p enhances mitochondrial elongation by targeting mitochondrial fission factor

  • Lee, Heejin;Tak, Hyosun;Park, So Jung;Jo, Yoon Kyung;Cho, Dong Hyung;Lee, Eun Kyung
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.214-219
    • /
    • 2017
  • Mitochondria play pivotal roles in the ATP production, apoptosis and generation of reactive oxygen species. Although dynamic regulation of mitochondria morphology is a critical step to maintain cellular homeostasis, the regulatory mechanisms are not yet fully elucidated. In this study, we identified miR-200a-3p as a novel regulator of mitochondrial dynamics by targeting mitochondrial fission factor (MFF). We demonstrated that the ectopic expression of miR-200a-3p enhanced mitochondrial elongation, mitochondrial ATP synthesis, mitochondrial membrane potential and oxygen consumption rate. These results indicate that miR-200a-3p positively regulates mitochondrial elongation by downregulating MFF expression.

TRAP1 regulation of mitochondrial life or death decision in cancer cells and mitochondria-targeted TRAP1 inhibitors

  • Kang, Byoung-Heon
    • BMB Reports
    • /
    • 제45권1호
    • /
    • pp.1-6
    • /
    • 2012
  • Hsp90 is one of the most conserved molecular chaperones ubiquitously expressed in normal cells and over-expressed in cancer cells. A pool of Hsp90 was found in cancer mitochondria and the expression of the mitochondrial Hsp90 homolog, TRAP1, was also elevated in many cancers. The mitochondrial pool of chaperones plays important roles in regulating mitochondrial integrity, protecting against oxidative stress, and inhibiting cell death. Pharmacological inactivation of the chaperones induced mitochondrial dysfunction and concomitant cell death selectively in cancer cells, suggesting they can be target proteins for the development of cancer therapeutics. Several drug candidates targeting TRAP1 and Hsp90 in the mitochondria have been developed and have shown strong cytotoxic activity in many cancers, but not in normal cells in vitro and in vivo. In this review, recent developments in the study of mitochondrial chaperones and the mitochondria-targeted chaperone inhibitors are discussed.

Mitochondrial Targeting Domain Homologs Induce Necrotic Cell Death Via Mitochondrial and Endoplasmic Reticulum Disruption

  • Park, Junghee;Han, Ji-Hye;Myung, Seung-Hyun;Chung, Hea-jong;Park, Jae-il;Cho, Ju-Yeon;Kim, Tae-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.875-881
    • /
    • 2021
  • The mitochondrial targeting domain (MTD) of Noxa contributes to its mitochondrial localization and to apoptosis induction. As a peptide, MTD fused with octa-arginine (R8), a CPP, induces necrosis related to intracellular calcium influx and destruction of mitochondria and endoplasmic reticulum. We searched for homologs of MTD, and compared their cell killing capability when fused with R8. Three of the seven peptides triggered cell death with similar mechanisms. The comparative analysis of peptide sequences showed that four amino acid sites of MTD are critical in regulating necrosis, suggesting the potential to generate artificial, adjustable cytotoxic peptides, which could be effective medicines for many diseases. Thus, homologs functionality could hint to the functions of their belonging proteins.

Ectopic Expression of Mitochondria Endonuclease Pnu1p from Schizosaccharomyces pombe Induces Cell Death of the Yeast

  • Oda, Kaoru;Kawasaki, Nami;Fukuyama, Masashi;Ikeda, Shogo
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.1095-1099
    • /
    • 2007
  • Endonuclease G (EndoG) is a mitochondrial non-specific nuclease that is highly conserved among the eukaryotes. Although the precise role of EndoG in mitochondria is not yet known, the enzyme is released from the mitochondria and digests nuclear DNA during apoptosis in mammalian cells. Schizosaccharomyces pombe has an EndoG homolog Pnu1p (previously named SpNuc1) that is produced as a precursor protein with a mitochondrial targeting sequence. During the sorting into mitochondria the signal sequence is cleaved to yield the functionally active endonuclease. From the analogy to EndoG, active extramitochondrial Pnu1p may trigger cell killing by degrading nuclear DNA. Here, we tested this possibility by expressing a truncated Pnu1p lacking the signal sequence in the extramitochondrial region of pnu1-deleted cells. The truncated Pnu1p was localized in the cytosol and nuclei of yeast cells. And ectopic expression of active Pnu1p led to cell death with fragmentation of nuclear DNA. This suggests that the Pnu1p is possibly involved in a certain type of yeast cell death via DNA fragmentation. Although expression of human Bak in S. pombe was lethal, Pnu1p nuclease is not necessary for hBak-induced cell death.

An Essential Role of the N-Terminal Region of ACSL1 in Linking Free Fatty Acids to Mitochondrial β-Oxidation in C2C12 Myotubes

  • Nan, Jinyan;Lee, Ji Seon;Lee, Seung-Ah;Lee, Dong-Sup;Park, Kyong Soo;Chung, Sung Soo
    • Molecules and Cells
    • /
    • 제44권9호
    • /
    • pp.637-646
    • /
    • 2021
  • Free fatty acids are converted to acyl-CoA by long-chain acyl-CoA synthetases (ACSLs) before entering into metabolic pathways for lipid biosynthesis or degradation. ACSL family members have highly conserved amino acid sequences except for their N-terminal regions. Several reports have shown that ACSL1, among the ACSLs, is located in mitochondria and mainly leads fatty acids to the β-oxidation pathway in various cell types. In this study, we investigated how ACSL1 was localized in mitochondria and whether ACSL1 overexpression affected fatty acid oxidation (FAO) rates in C2C12 myotubes. We generated an ACSL1 mutant in which the N-terminal 100 amino acids were deleted and compared its localization and function with those of the ACSL1 wild type. We found that ACSL1 adjoined the outer membrane of mitochondria through interaction of its N-terminal region with carnitine palmitoyltransferase-1b (CPT1b) in C2C12 myotubes. In addition, overexpressed ACSL1, but not the ACSL1 mutant, increased FAO, and ameliorated palmitate-induced insulin resistance in C2C12 myotubes. These results suggested that targeting of ACSL1 to mitochondria is essential in increasing FAO in myotubes, which can reduce insulin resistance in obesity and related metabolic disorders.

Aspartate-glutamate carrier 2 (citrin): a role in glucose and amino acid metabolism in the liver

  • Milan Holecek
    • BMB Reports
    • /
    • 제56권7호
    • /
    • pp.385-391
    • /
    • 2023
  • Aspartate-glutamate carrier 2 (AGC2, citrin) is a mitochondrial carrier expressed in the liver that transports aspartate from mitochondria into the cytosol in exchange for glutamate. The AGC2 is the main component of the malate-aspartate shuttle (MAS) that ensures indirect transport of NADH produced in the cytosol during glycolysis, lactate oxidation to pyruvate, and ethanol oxidation to acetaldehyde into mitochondria. Through MAS, AGC2 is necessary to maintain intracellular redox balance, mitochondrial respiration, and ATP synthesis. Through elevated cytosolic Ca2+ level, the AGC2 is stimulated by catecholamines and glucagon during starvation, exercise, and muscle wasting disorders. In these conditions, AGC2 increases aspartate input to the urea cycle, where aspartate is a source of one of two nitrogen atoms in the urea molecule (the other is ammonia), and a substrate for the synthesis of fumarate that is gradually converted to oxaloacetate, the starting substrate for gluconeogenesis. Furthermore, aspartate is a substrate for the synthesis of asparagine, nucleotides, and proteins. It is concluded that AGC2 plays a fundamental role in the compartmentalization of aspartate and glutamate metabolism and linkage of the reactions of MAS, glycolysis, gluconeogenesis, amino acid catabolism, urea cycle, protein synthesis, and cell proliferation. Targeting of AGC genes may represent a new therapeutic strategy to fight cancer.

Apoptotic Signaling Pathways: Caspases and Stress-Activated Protein Kinases

  • Cho, Ssang-Goo;Choi, Eui-Ju
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.24-27
    • /
    • 2002
  • Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.