DOI QR코드

DOI QR Code

Aspartate-glutamate carrier 2 (citrin): a role in glucose and amino acid metabolism in the liver

  • Milan Holecek (Department of Physiology, Faculty of Medicine, Charles University)
  • Received : 2023.04.05
  • Accepted : 2023.05.29
  • Published : 2023.07.31

Abstract

Aspartate-glutamate carrier 2 (AGC2, citrin) is a mitochondrial carrier expressed in the liver that transports aspartate from mitochondria into the cytosol in exchange for glutamate. The AGC2 is the main component of the malate-aspartate shuttle (MAS) that ensures indirect transport of NADH produced in the cytosol during glycolysis, lactate oxidation to pyruvate, and ethanol oxidation to acetaldehyde into mitochondria. Through MAS, AGC2 is necessary to maintain intracellular redox balance, mitochondrial respiration, and ATP synthesis. Through elevated cytosolic Ca2+ level, the AGC2 is stimulated by catecholamines and glucagon during starvation, exercise, and muscle wasting disorders. In these conditions, AGC2 increases aspartate input to the urea cycle, where aspartate is a source of one of two nitrogen atoms in the urea molecule (the other is ammonia), and a substrate for the synthesis of fumarate that is gradually converted to oxaloacetate, the starting substrate for gluconeogenesis. Furthermore, aspartate is a substrate for the synthesis of asparagine, nucleotides, and proteins. It is concluded that AGC2 plays a fundamental role in the compartmentalization of aspartate and glutamate metabolism and linkage of the reactions of MAS, glycolysis, gluconeogenesis, amino acid catabolism, urea cycle, protein synthesis, and cell proliferation. Targeting of AGC genes may represent a new therapeutic strategy to fight cancer.

Keywords

Acknowledgement

This work was supported by Charles University, the Cooperatio Program, research area METD.

References

  1. Borst P (2020) The malate-aspartate shuttle (Borst cycle): how it started and developed into a major metabolic pathway. IUBMB Life 72, 2241-2259 https://doi.org/10.1002/iub.2367
  2. Monne M, Vozza A, Lasorsa FM et al (2019) Mitochondrial carriers for aspartate, glutamate and other amino acids: a review. Int J Mol Sci 20, 4456
  3. Palmieri L, Pardo B, Lasorsa FM et al (2001) Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20, 5060-5069 https://doi.org/10.1093/emboj/20.18.5060
  4. Contreras L, Gomez-Puertas P, Iijima M, Kobayashi K, Saheki T, Satrustegui J (2007) Ca2+ activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin: role in the heart malate-aspartate NADH shuttle. J Biol Chem 282, 7098-7106 https://doi.org/10.1074/jbc.M610491200
  5. Thangaratnarajah C, Ruprecht JJ, Kunji ER (2014) Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers. Nat Commun 5, 5491
  6. Bond M, Vadasz G, Somlyo AV, Somlyo AP (1987) Subcellular calcium and magnesium mobilization in rat liver stimulated in vivo with vasopressin and glucagon. J Biol Chem 262, 15630-15636 https://doi.org/10.1016/S0021-9258(18)47773-3
  7. Keppens S, Vandenheede JR, De Wulf H (1977) On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim Biophys Acta 496, 448-457 https://doi.org/10.1016/0304-4165(77)90327-0
  8. Blackmore PF, Waynick LE, Blackman GE, Graham CW, Sherry RS (1984) Alpha- and beta-adrenergic stimulation of parenchymal cell Ca2+ influx. Influence of extracellular pH. J Biol Chem 259, 12322-12325 https://doi.org/10.1016/S0021-9258(18)90746-5
  9. del Arco A, Satrustegui J (1998) Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem 273, 23327-23334 https://doi.org/10.1074/jbc.273.36.23327
  10. Sheid B, Morrris HP, Roth JS (1965) Distribution and activity of aspartate aminotransferase in some rapidly proliferating tissues. J Biol Chem 240, 3016-3022 https://doi.org/10.1016/S0021-9258(18)97280-7
  11. Holecek M, Sispera L (2016) Effects of arginine supplementation on amino acid profiles in blood and tissues in fed and overnight-fasted rats. Nutrients 8, 206
  12. Stoll B, McNelly S, Buscher HP, Haussinger D (1991) Functional hepatocyte heterogeneity in glutamate, aspartate and alpha-ketoglutarate uptake: a histoautoradiographical study. Hepatology 13, 247-253 https://doi.org/10.1002/hep.1840130208
  13. Haussinger D, Stoll B, Stehle T, Gerok W (1989) Hepatocyte heterogeneity in glutamate metabolism and bidirectional transport in perfused rat liver. Eur J Biochem 185, 189-195 https://doi.org/10.1111/j.1432-1033.1989.tb15101.x
  14. Monne M, Miniero DV, Iacobazzi V, Bisaccia F, Fiermonte G (2013) The mitochondrial oxoglutarate carrier: from identification to mechanism. J Bioenerg Biomembr 45, 1-13 https://doi.org/10.1007/s10863-012-9475-7
  15. Jungas RL, Halperin ML, Brosnan JT (1992) Quantitative analysis of amino acid oxidation and related GLUconeogenesis in humans. Physiol Rev 72, 419-448 https://doi.org/10.1152/physrev.1992.72.2.419
  16. Schutz Y (2011) Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res 81, 101-107 https://doi.org/10.1024/0300-9831/a000064
  17. Veldhorst MA, Westerterp-Plantenga MS, Westerterp KR (2009) Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am J Clin Nutr 90, 519-526 https://doi.org/10.3945/ajcn.2009.27834
  18. Kraus-Friedmann N, Feng L (1996) The role of intracellular Ca2+ in the regulation of gluconeogenesis. Metabolism 45, 389-403 https://doi.org/10.1016/S0026-0495(96)90296-6
  19. Reeds PJ, Garlick PJ (2003) Protein and amino acid requirements and the composition of complementary foods. J Nutr 133, 2953-2961 https://doi.org/10.1093/jn/133.9.2953S
  20. Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG (2015) Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552-563 https://doi.org/10.1016/j.cell.2015.07.017
  21. Sullivan LB, Luengo A, Danai LV et al (2018) Aspartate is an endogenous metabolic limitation for tumour growth. Nat Cell Biol 20, 782-788 https://doi.org/10.1038/s41556-018-0125-0
  22. Ray RM, Viar MJ, Patel TB, Johnson LR (1999) Interaction of asparagine and EGF in the regulation of ornithine decarboxylase in IEC-6 cells. Am J Physiol 276, G773-G780 https://doi.org/10.1152/ajpgi.1999.276.3.G773
  23. Cruise JL, Muga SJ, Lee YS, Michalopoulos GK (1989) Regulation of hepatocyte growth: alpha-1 adrenergic receptor and ras p21 changes in liver regeneration. J Cell Physiol 140, 195-201 https://doi.org/10.1002/jcp.1041400202
  24. Mine T, Kojima I, Ogata E, Nakamura T (1991) Comparison of effects of HGF and EGF on cellular calcium in rat hepatocytes. Biochem Biophys Res Commun 181, 1173-1180 https://doi.org/10.1016/0006-291X(91)92062-O
  25. Lagoudakis L, Garcin I, Julien B et al (2010) Cytosolic calcium regulates liver regeneration in the rat. Hepatology 52, 602-611 https://doi.org/10.1002/hep.23673
  26. Nicou A, Serriere V, Hilly M et al (2007) Remodelling of calcium signalling during liver regeneration in the rat. J Hepatol 46, 247-256 https://doi.org/10.1016/j.jhep.2006.08.014
  27. Saheki T, Kobayashi K, Iijima M et al (2005) Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier. Hepatol Res 33, 181-184 https://doi.org/10.1016/j.hepres.2005.09.031
  28. Saheki T, Moriyama M, Funahashi A, Kuroda E (2020) AGC2 (citrin) deficiency-from recognition of the disease till construction of therapeutic procedures. Biomolecules 10, 100
  29. Arai-Ichinoi N, Kikuchi A, Wada Y, Sakamoto O, Kure S (2021) Hypoglycemic attacks and growth failure are the most common manifestations of citrin deficiency after 1 year of age. J Inherit Metab Dis 44, 838-846 https://doi.org/10.1002/jimd.12390
  30. Tsai CW, Yang CC, Chen HL et al (2006) Homozygous SLC25A13 mutation in a Taiwanese patient with adult-onset citrullinemia complicated with steatosis and hepatocellular carcinoma. J Formos Med Assoc 105, 852-856 https://doi.org/10.1016/S0929-6646(09)60274-6
  31. Hagiwara N, Sekijima Y, Takei Y et al (2003) Hepatocellular carcinoma in a case of adult-onset type II citrullinemia. Intern Med 42, 978-982 https://doi.org/10.2169/internalmedicine.42.978
  32. Ito T, Shiraki K, Sekoguchi K et al (2000) Hepatocellular carcinoma associated with adult-type citrullinemia. Dig Dis Sci 45, 2203-2206 https://doi.org/10.1023/A:1026439913915
  33. Broeks MH, van Karnebeek CDM, Wanders RJA, Jans JJM, Verhoeven-Duif NM (2021) Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 44, 792-808 https://doi.org/10.1002/jimd.12402
  34. Tavoulari S, Lacabanne D, Thangaratnarajah C, Kunji ERS (2022) Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency. Trends Endocrinol Metab 33, 539-553 https://doi.org/10.1016/j.tem.2022.05.002
  35. Hayasaka K, Numakura C, Toyota K et al (2014) Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Mol Genet Metab Rep 1, 42-50 https://doi.org/10.1016/j.ymgmr.2013.12.002
  36. Komatsu M, Yazaki M, Tanaka N et al (2008) Citrin deficiency as a cause of chronic liver disorder mimicking non-alcoholic fatty liver disease. J Hepatol 49, 810-820 https://doi.org/10.1016/j.jhep.2008.05.016
  37. Holecek M (2022) Serine metabolism in health and disease and as a conditionally essential amino acid. Nutrients 14, 1987
  38. Zhang H, Wang Y, Li J et al (2018) Biosynthetic energy cost for amino acids decreases in cancer evolution. Nat Commun 9, 4124
  39. Miyo M, Konno M, Nishida N et al (2016) Metabolic adaptation to nutritional stress in human colorectal cancer. Sci Rep 6, 38415
  40. Amoedo ND, Punzi G, Obre E et al (2016) AGC1/2, the mitochondrial aspartate-glutamate carriers. Biochim Biophys Acta 1863, 2394-2412 https://doi.org/10.1016/j.bbamcr.2016.04.011
  41. Alkan HF, Walter KE, Luengo A et al (2018) Cytosolic aspartate availability determines cell survival when glutamine is limiting. Cell Metab 28, 706-720 https://doi.org/10.1016/j.cmet.2018.07.021
  42. Lv Y, Yuan CH, Han LY et al (2022) The overexpression of SLC25A13 predicts poor prognosis and is correlated with immune cell infiltration in patients with skin cutaneous melanoma. Dis Markers 2022, 4091978
  43. Garcia-Bermudez J, Baudrier L, La K et al (2018). Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat Cell Biol 20, 775-781 https://doi.org/10.1038/s41556-018-0118-z
  44. Dong H, Zhang H, Liang J et al (2011) Digital karyotyping reveals probable target genes at 7q21.3 locus in hepatocellular carcinoma. BMC Med Genomics 4, 60
  45. Chang KW, Chen HL, Chien YH, Chen TC, Yeh CT (2011) SLC25A13 gene mutations in Taiwanese patients with non-viral hepatocellular carcinoma. Mol Genet Metab 103, 293-296 https://doi.org/10.1016/j.ymgme.2011.03.013
  46. Infantino V, Dituri F, Convertini P et al (2019) Epigenetic upregulation and functional role of the mitochondrial aspartate/glutamate carrier isoform 1 in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 1865, 38-47 https://doi.org/10.1016/j.bbadis.2018.10.018
  47. Mention K, Joncquel Chevalier Curt M, Dessein AF, Douillard C, Dobbelaere D, Vamecq J (2021) Citrin deficiency: does the reactivation of liver aralar-1 come into play and promote HCC development? Biochimie 190, 20-23 https://doi.org/10.1016/j.biochi.2021.06.018
  48. Gorgoglione R, Impedovo V, Riley CL et al (2022) Glutamine-derived aspartate biosynthesis in cancer cells: role of mitochondrial transporters and new therapeutic perspectives. Cancers (Basel) 14, 245
  49. Zhang L, Wei Y, Yuan S, Sun L (2023) Targeting mitochondrial metabolic reprogramming as a potential approach for cancer therapy. Int J Mol Sci 24, 4954