Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.1.1

TRAP1 regulation of mitochondrial life or death decision in cancer cells and mitochondria-targeted TRAP1 inhibitors  

Kang, Byoung-Heon (Graduate Program of Life Science, School of Nano-Bioscience and Chemical Engineering, and C5 Science Research Center, UNIST)
Publication Information
BMB Reports / v.45, no.1, 2012 , pp. 1-6 More about this Journal
Abstract
Hsp90 is one of the most conserved molecular chaperones ubiquitously expressed in normal cells and over-expressed in cancer cells. A pool of Hsp90 was found in cancer mitochondria and the expression of the mitochondrial Hsp90 homolog, TRAP1, was also elevated in many cancers. The mitochondrial pool of chaperones plays important roles in regulating mitochondrial integrity, protecting against oxidative stress, and inhibiting cell death. Pharmacological inactivation of the chaperones induced mitochondrial dysfunction and concomitant cell death selectively in cancer cells, suggesting they can be target proteins for the development of cancer therapeutics. Several drug candidates targeting TRAP1 and Hsp90 in the mitochondria have been developed and have shown strong cytotoxic activity in many cancers, but not in normal cells in vitro and in vivo. In this review, recent developments in the study of mitochondrial chaperones and the mitochondria-targeted chaperone inhibitors are discussed.
Keywords
Anticancer drugs; Cyclophlin D; Gamitrinibs; Hsp90; Mitochondria; Molecular chaperones; TRAP1;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
  • Reference
1 Plescia, J., Salz, W., Xia, F., Pennati, M., Zaffaroni, N., Daidone, M. G., Meli, M., Dohi, T., Fortugno, P., Nefedova, Y., Gabrilovich, D. I., Colombo, G. and Altieri, D. C. (2005) Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7, 457-468.   DOI   ScienceOn
2 Fulda, S., Galluzzi, L. and Kroemer, G. (2010) Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 9, 447-464.   DOI   ScienceOn
3 Kang, B. H., Xia, F., Pop, R., Dohi, T., Socolovsky, M. and Altieri, D. C. (2011) Developmental control of apoptosis by the immunophilin aryl hydrocarbon receptor-interacting protein (AIP) involves mitochondrial import of the survivin protein. J. Biol. Chem. 286, 16758-16767.   DOI   ScienceOn
4 Pridgeon, J. W., Olzmann, J. A., Chin, L. S. and Li, L. (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5, e172.   DOI
5 Trepel, J., Mollapour, M., Giaccone, G. and Neckers, L. (2010) Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer 10, 537-549.   DOI   ScienceOn
6 Gatenby, R. A. and Gillies, R. J. (2004) Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891-899.   DOI   ScienceOn
7 Costantino, E., Maddalena, F., Calise, S., Piscazzi, A., Tirino, V., Fersini, A., Ambrosi, A., Neri, V., Esposito, F. and Landriscina, M. (2009) TRAP1, a novel mitochondrial chaperone responsible for multi-drug resistance and protection from apoptosis in human colorectal carcinoma cells. Cancer Lett. 279, 39-46.   DOI   ScienceOn
8 Liu, D., Hu, J., Agorreta, J., Cesario, A., Zhang, Y., Harris, A. L., Gatter, K. and Pezzella, F. (2010) Tumor necrosis factor receptor-associated protein 1(TRAP1) regulates genes involved in cell cycle and metastases. Cancer Lett. 296, 194-205.   DOI   ScienceOn
9 Kang, B. H., Siegelin, M. D., Plescia, J., Raskett, C. M., Garlick, D. S., Dohi, T., Lian, J. B., Stein, G. S., Languino, L. R. and Altieri, D. C. (2010) Preclinical characterization of mitochondria-targeted small molecule hsp90 inhibitors, gamitrinibs, in advanced prostate cancer. Clin. Cancer Res. 16, 4779-4788.   DOI   ScienceOn
10 Takemoto, K., Miyata, S., Takamura, H., Katayama, T. and Tohyama, M. (2011) Mitochondrial TRAP1 regulates the unfolded protein response in the endoplasmic reticulum. Neurochem. Int. 58, 880-887.   DOI   ScienceOn
11 Kang, B. H., Tavecchio, M., Goel, H. L., Hsieh, C. C., Garlick, D. S., Raskett, C. M., Lian, J. B., Stein, G. S., Languino, L. R. and Altieri, D. C. (2011) Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease. Br. J. Cancer 104, 629-634.   DOI   ScienceOn
12 Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P., MacGregor, G. R. and Wallace, D. C. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427, 461-465.   DOI   ScienceOn
13 Basso, E., Fante, L., Fowlkes, J., Petronilli, V., Forte, M. A. and Bernardi, P. (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J. Biol. Chem. 280, 18558-18561.   DOI   ScienceOn
14 Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., Brunskill, E. W., Sayen, M. R., Gottlieb, R. A., Dorn, G. W., Robbins, J. and Molkentin, J. D. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658-662.   DOI   ScienceOn
15 Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T. and Tsujimoto, Y. (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652-658.   DOI   ScienceOn
16 Johnson, N., Khan, A., Virji, S., Ward, J. M. and Crompton, M. (1999) Import and processing of heart mitochondrial cyclophilin D. Eur. J. Biochem. 263, 353-359.   DOI   ScienceOn
17 Leav, I., Plescia, J., Goel, H. L., Li, J., Jiang, Z., Cohen, R. J., Languino, L. R. and Altieri, D. C. (2010) Cytoprotective mitochondrial chaperone TRAP-1 as a novel molecular target in localized and metastatic prostate cancer. Am. J. Pathol. 176, 393-401.   DOI   ScienceOn
18 Kang, B. H. and Altieri, D. C. (2009) Compartmentalized cancer drug discovery targeting mitochondrial Hsp90 chaperones. Oncogene 28, 3681-3688.   DOI   ScienceOn
19 Coller, H. A., Grandori, C., Tamayo, P., Colbert, T., Lander, E. S., Eisenman, R. N. and Golub, T. R. (2000) Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl. Acad. Sci. U.S.A. 97, 3260-3265.   DOI   ScienceOn
20 Putz, S. M., Vogiatzi, F., Stiewe, T. and Sickmann, A. (2010) Malignant transformation in a defined genetic background: proteome changes displayed by 2D-PAGE. Mol. Cancer 9, 254.   DOI   ScienceOn
21 Masuda, Y., Shima, G., Aiuchi, T., Horie, M., Hori, K., Nakajo, S., Kajimoto, S., Shibayama-Imazu, T. and Nakaya, K. (2004) Involvement of tumor necrosis factor receptor- associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J. Biol. Chem. 279, 42503-42515.   DOI   ScienceOn
22 Montesano Gesualdi, N., Chirico, G., Pirozzi, G., Costantino, E., Landriscina, M. and Esposito, F. (2007) Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 10, 342-350.   DOI   ScienceOn
23 Hua, G., Zhang, Q. and Fan, Z. (2007) Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J. Biol. Chem. 282, 20553-20560.   DOI   ScienceOn
24 Im, C. N., Lee, J. S., Zheng, Y. and Seo, J. S. (2007) Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 100, 474-486.   DOI   ScienceOn
25 Tsujimoto, Y., Nakagawa, T. and Shimizu, S. (2006) Mitochondrial membrane permeability transition and cell death. Biochim. Biophys. Acta. 1757, 1297-1300.   DOI   ScienceOn
26 Siegelin, M. D., Dohi, T., Raskett, C. M., Orlowski, G. M., Powers, C. M., Gilbert, C. A., Ross, A. H., Plescia, J. and Altieri, D. C. (2011) Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J. Clin. Invest. 121, 1349-1360.   DOI   ScienceOn
27 Mattson, M. P. and Kroemer, G. (2003) Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol. Med. 9, 196-205.   DOI   ScienceOn
28 Kroemer, G., Galluzzi, L. and Brenner, C. (2007) Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99-163.   DOI   ScienceOn
29 Baines, C. P., Kaiser, R. A., Sheiko, T., Craigen, W. J. and Molkentin, J. D. (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell. Biol. 9, 550-555.   DOI   ScienceOn
30 Felts, S. J., Owen, B. A., Nguyen, P., Trepel, J., Donner, D. B. and Toft, D. O. (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 275, 3305-3312.   DOI   ScienceOn
31 Leskovar, A., Wegele, H., Werbeck, N. D., Buchner, J. and Reinstein, J. (2008) The ATPase cycle of the mitochondrial Hsp90 analog Trap1. J. Biol. Chem. 283, 11677-11688.   DOI   ScienceOn
32 Kang, B. H., Plescia, J., Dohi, T., Rosa, J., Doxsey, S. J. and Altieri, D. C. (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131, 257-270.   DOI   ScienceOn
33 Kang, B. H., Plescia, J., Song, H. Y., Meli, M., Colombo, G., Beebe, K., Scroggins, B., Neckers, L. and Altieri, D. C. (2009) Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J. Clin. Invest. 119, 454-464.   DOI   ScienceOn
34 Patten, D. A., Germain, M., Kelly, M. A. and Slack, R. S. (2010) Reactive oxygen species: stuck in the middle of neurodegeneration. J. Alzheimers Dis. 20(Suppl 2), S357-367.   DOI
35 Schleiff, E. and Becker, T. (2011) Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat. Rev. Mol. Cell. Biol. 12, 48-59.   DOI   ScienceOn
36 Simmons, A. D., Musy, M. M., Lopes, C. S., Hwang, L. Y., Yang, Y. P. and Lovett, M. (1999) A direct interaction between EXT proteins and glycosyltransferases is defective in hereditary multiple exostoses. Hum. Mol. Genet. 8, 2155-2164.   DOI   ScienceOn
37 Deocaris, C. C., Kaul, S. C. and Wadhwa, R. (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11, 116-128.   DOI   ScienceOn
38 Sotgia, F., Martinez-Outschoorn, U. E. and Lisanti, M. P. (2011) Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med. 9, 62.   DOI
39 Pearl, L. H. and Prodromou, C. (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75, 271-294.   DOI   ScienceOn
40 Feder, M. E. and Hofmann, G. E. (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243-282.   DOI   ScienceOn
41 Taipale, M., Jarosz, D. F. and Lindquist, S. (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell. Biol. 11, 515-528.   DOI   ScienceOn
42 Bagatell, R. and Whitesell, L. (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol. Cancer Ther. 3, 1021-1030.   DOI   ScienceOn
43 Chen, B., Piel, W. H., Gui, L., Bruford, E. and Monteiro, A. (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics. 86, 627-637.   DOI   ScienceOn
44 Blagg, B. S. and Kerr, T. D. (2006) Hsp90 inhibitors: small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation. Med. Res. Rev. 26, 310-338.   DOI   ScienceOn
45 Solit, D. B. and Chiosis, G. (2008) Development and application of Hsp90 inhibitors. Drug Discov. Today 13, 38-43.   DOI   ScienceOn
46 Biamonte, M. A., Van de Water, R., Arndt, J. W., Scannevin, R. H., Perret, D. and Lee, W. C. (2010) Heat shock protein 90: inhibitors in clinical trials. J. Med. Chem. 53, 3-17.   DOI   ScienceOn
47 Song, H. Y., Dunbar, J. D., Zhang, Y. X., Guo, D. and Donner, D. B. (1995) Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J. Biol. Chem. 270, 3574-3581.   DOI   ScienceOn
48 Chen, C. F., Chen, Y., Dai, K., Chen, P. L., Riley, D. J. and Lee, W. H. (1996) A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Mol. Cell. Biol. 16, 4691-4699.   DOI
49 Welch, W. J. (1991) The role of heat-shock proteins as molecular chaperones. Curr. Opin. Cell. Biol. 3, 1033-1038.   DOI   ScienceOn
50 Hightower, L. E. (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66, 191-197.   DOI   ScienceOn
51 Whitesell, L. and Lindquist, S. L. (2005) HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761-772.   DOI   ScienceOn