Browse > Article
http://dx.doi.org/10.5483/BMBRep.2017.50.4.006

microRNA-200a-3p enhances mitochondrial elongation by targeting mitochondrial fission factor  

Lee, Heejin (Department of Biochemistry, College of Medicine, The Catholic University of Korea)
Tak, Hyosun (Department of Biochemistry, College of Medicine, The Catholic University of Korea)
Park, So Jung (Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University)
Jo, Yoon Kyung (Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University)
Cho, Dong Hyung (Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University)
Lee, Eun Kyung (Department of Biochemistry, College of Medicine, The Catholic University of Korea)
Publication Information
BMB Reports / v.50, no.4, 2017 , pp. 214-219 More about this Journal
Abstract
Mitochondria play pivotal roles in the ATP production, apoptosis and generation of reactive oxygen species. Although dynamic regulation of mitochondria morphology is a critical step to maintain cellular homeostasis, the regulatory mechanisms are not yet fully elucidated. In this study, we identified miR-200a-3p as a novel regulator of mitochondrial dynamics by targeting mitochondrial fission factor (MFF). We demonstrated that the ectopic expression of miR-200a-3p enhanced mitochondrial elongation, mitochondrial ATP synthesis, mitochondrial membrane potential and oxygen consumption rate. These results indicate that miR-200a-3p positively regulates mitochondrial elongation by downregulating MFF expression.
Keywords
microRNAs; miR-200a-3p; Mitochondria dynamics; Mitochondria fragmentation; Mitochondrial fission factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kaviani M, Azarpira N, Karimi MH and Al-Abdullah I (2016) The role of microRNAs in islet beta-cell development. Cell Biol Int 40, 1248-1255   DOI
2 Achkar NP, Cambiagno DA and Manavella PA (2016) miRNA Biogenesis: A Dynamic Pathway. Trends Plant Sci 21, 1034-1044
3 Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G and Calin GA (2016) microRNA Therapeutics in Cancer - An Emerging Concept. EBioMedicine 12, 34-42   DOI
4 Feng J, Xing W and Xie L (2016) Regulatory Roles of MicroRNAs in Diabetes. Int J Mol Sci 17
5 Catalanotto C, Cogoni C and Zardo G (2016) MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int J Mol Sci 17, 1712   DOI
6 Geiger J and Dalgaard LT (2017) Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 74, 631-646   DOI
7 Moss EG (2002) MicroRNAs: hidden in the genome. Curr Biol 12, R138-140   DOI
8 Donzelli S, Cioce M, Muti P, Strano S, Yarden Y and Blandino G (2016) MicroRNAs: Non-coding fine tuners of receptor tyrosine kinase signalling in cancer. Semin Cell Dev Biol 50, 133-142   DOI
9 Mishra P and Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212, 379-387   DOI
10 Saita S, Ishihara T, Maeda M et al (2016) Distinct types of protease systems are involved in homeostasis regulation of mitochondrial morphology via balanced fusion and fission. Genes Cells 21, 408-424   DOI
11 Kamiya Y, Kawada J, Kawano Y et al (2015) Serum microRNAs as Potential Biomarkers of Juvenile Idiopathic Arthritis. Clin Rheumatol 34, 1705-1712   DOI
12 Song MA, Paradis AN, Gay MS, Shin J and Zhang L (2015) Differential expression of microRNAs in ischemic heart disease. Drug Discov Today 20, 223-235   DOI
13 Irwandi RA and Vacharaksa A (2016) The role of microRNA in periodontal tissue: A review of the literature. Arch Oral Biol 72, 66-74   DOI
14 Sun J, Sonstegard TS, Li C et al (2015) Altered microRNA expression in bovine skeletal muscle with age. Anim Genet 46, 227-238   DOI
15 Hill L, Browne G and Tulchinsky E (2013) ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer 132, 745-754   DOI
16 Xu Y, Zhao C, Sun X, Liu Z and Zhang J (2015) MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise. Biochem Biophys Res Commun 467, 103-108   DOI
17 Brabletz S and Brabletz T (2010) The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer? EMBO Rep 11, 670-677   DOI
18 Bracken CP, Gregory PA, Kolesnikoff N et al (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68, 7846-7854   DOI
19 Cong N, Du P, Zhang A et al (2013) Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol Rep 29, 1579-1587   DOI
20 Sulaiman SA, Ab Mutalib NS and Jamal R (2016) miR-200c Regulation of Metastases in Ovarian Cancer: Potential Role in Epithelial and Mesenchymal Transition. Front Pharmacol 7, 271
21 Diaz T, Tejero R, Moreno I et al (2014) Role of miR-200 family members in survival of colorectal cancer patients treated with fluoropyrimidines. J Surg Oncol 109, 676-683   DOI
22 Koutsaki M, Spandidos DA and Zaravinos A (2014) Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett 351, 173-181   DOI
23 Wang JX, Jiao JQ, Li Q et al (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17, 71-78   DOI
24 Detmer SA and Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Bio 8, 870-879   DOI
25 Suen D-F, Norris KL and Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22, 1577-1590   DOI
26 Ojha CR, Rodriguez M, Dever SM, Mukhopadhyay R and El-Hage N (2016) Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections. J Biomed Sci 23, 74   DOI
27 Fan S, Chen WX, Lv XB et al (2015) miR-483-5p determines mitochondrial fission and cisplatin sensitivity in tongue squamous cell carcinoma by targeting FIS1. Cancer Lett 362, 183-191   DOI
28 Wang K, Long B, Jiao JQ et al (2012) miR-484 regulates mitochondrial network through targeting Fis1. Nat Commun 3, 781   DOI
29 Guan X, Wang L, Liu Z et al (2016) miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol 99, 207-217   DOI
30 Joshi SR, Dhagia V, Gairhe S, Edwards JG, McMurtry IF and Gupte SA (2016) MicroRNA-140 is elevated and mitofusin-1 is downregulated in the right ventricle of the Sugen5416/hypoxia/normoxia model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 311, H689-698   DOI
31 Zhang R, Zhou H, Jiang L et al (2016) MiR-195 dependent roles of mitofusin2 in the mitochondrial dysfunction of hippocampal neurons in SAMP8 mice. Brain Res 1652, 135-143   DOI
32 Zhou X, Zhang L, Zheng B et al (2016) MicroRNA-761 is upregulated in hepatocellular carcinoma and regulates tumorigenesis by targeting Mitofusin-2. Cancer Sci 107, 424-432   DOI
33 Li X, Wang FS, Wu ZY, Lin JL, Lan WB and Lin JH (2014) MicroRNA-19b targets Mfn1 to inhibit Mfn1-induced apoptosis in osteosarcoma cells. Neoplasma 61, 265-273   DOI
34 Zhou X, Zuo S and Xin W (2015) miR-27b overexpression improves mitochondrial function in a Sirt1-dependent manner. J Physiol Biochem 71, 753-762   DOI
35 Li H, Tang J, Lei H et al (2014) Decreased MiR-200a/141 suppress cell migration and proliferation by targeting PTEN in Hirschsprung's disease. Cell Physiol Biochem 34, 543-553   DOI
36 Chen C, Yang D, Wang Q and Wang X (2015) Expression and Clinical Pathological Significance of miR-200a in Concurrent Cholangiocarcinoma Associated with Hepatolithiasis. Med Sci Monit 21, 3585-3590   DOI
37 Dhayat SA, Mardin WA, Kohler G et al (2014) The microRNA-200 family--a potential diagnostic marker in hepatocellular carcinoma? J Surg Oncol 110, 430-438   DOI
38 Leskela S, Leandro-Garcia LJ, Mendiola M et al (2011) The miR-200 family controls beta-tubulin III expression and is associated with paclitaxel-based treatment response and progression-free survival in ovarian cancer patients. Endocr Relat Cancer 18, 85-95
39 Zuberi M, Mir R, Das J et al (2015) Expression of serum miR-200a, miR-200b, and miR-200c as candidate biomarkers in epithelial ovarian cancer and their association with clinicopathological features. Clin Transl Oncol 17, 779-787   DOI
40 Bereiter-Hahn J and Jendrach M (2010) Mitochondrial dynamics. Int Rev Cell Mol Biol 284, 1-65
41 Ni HM, Williams JA and Ding WX (2015) Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4, 6-13   DOI
42 Zorzano A, Liesa M, Sebastian D, Segales J and Palacin M (2010) Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin Cell Dev Biol 21, 566-574   DOI
43 Hyde BB, Twig G and Shirihai OS (2010) Organellar vs cellular control of mitochondrial dynamics. Semin Cell Dev Biol 21, 575-581   DOI
44 Kuzmicic J, Del Campo A, Lopez-Crisosto C et al (2011) [Mitochondrial dynamics: a potential new therapeutic target for heart failure]. Rev Esp Cardiol 64, 916-923   DOI
45 Gomes LC and Scorrano L (2013) Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta 1833, 205-212   DOI
46 Chang CR and Blackstone C (2010) Dynamic regulation of mitochondrial fission through modification of the dynaminrelated protein Drp1. Ann NY Acad Sci 1201, 34-39   DOI
47 Kashatus JA, Nascimento A, Myers LJ et al (2015) Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 57, 537-551   DOI
48 Samant SA, Zhang HJ, Hong Z et al (2014) SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol 34, 807-819   DOI
49 Escobar-Henriques M (2014) Mitofusins: ubiquitylation promotes fusion. Cell Res 24, 387-388   DOI
50 Ke XS, Liu CM, Liu DP and Liang CC (2003) MicroRNAs: key participants in gene regulatory networks. Curr Opin Chem Biol 7, 516-523   DOI
51 Silva Ramos E, Larsson NG and Mourier A (2016) Bioenergetic roles of mitochondrial fusion. Biochim Biophys Acta 1857, 1277-1283   DOI
52 Fan S, Liu B, Sun L et al (2015) Mitochondrial fission determines cisplatin sensitivity in tongue squamous cell carcinoma through the BRCA1-miR-593-5p-MFF axis. Oncotarget 6, 14885-14904
53 Ma J, Lin Y, Zhan M, Mann DL, Stass SA and Jiang F (2015) Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer. Lab Invest 95, 1197-1206   DOI
54 Long B, Wang K, Li N et al (2013) miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Radic Biol Med 65, 371-379   DOI
55 Toyama EQ, Herzig S, Courchet J et al (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275-281   DOI
56 Tak H, Kim J, Jayabalan AK et al (2014) miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor. Exp Mol Med 46, e123   DOI
57 Bose A and Beal MF (2016) Mitochondrial dysfunction in Parkinson's disease. J Neurochem 139 Suppl 1, 216-231   DOI
58 Lee H and Yoon Y (2016) Mitochondrial fission and fusion. Biochem Soc Trans 44, 1725-1735   DOI
59 Wada J and Nakatsuka A (2016) Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes. Acta Med Okayama 70, 151-158
60 Chen H and Chan DC (2009) Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 18, R169-R176   DOI
61 Cho DH, Nakamura T and Lipton SA (2010) Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 67, 3435-3447   DOI
62 Rehman J, Zhang HJ, Toth PT et al (2012) Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 26, 2175-2186   DOI