• Title/Summary/Keyword: Mission Time

Search Result 727, Processing Time 0.027 seconds

The Design of Fault Tolerant Dual System and Real Time Fault Detection for Countdown Time Generating System

  • Kim, Jeong-Seok;Han, Yoo-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.125-133
    • /
    • 2016
  • In this paper, we propose a real-time fault monitoring and dual system design of the countdown time-generating system, which is the main component of the mission control system. The countdown time-generating system produces a countdown signal that is distributed to mission control system devices. The stability of the countdown signal is essential for the main launch-related devices because they perform reserved functions based on the countdown time information received from the countdown time-generating system. Therefore, a reliable and fault-tolerant design is required for the countdown time-generating system. To ensure system reliability, component devices should be redundant and faults should be monitored in real time to manage the device changeover from Active mode to Standby mode upon fault detection. In addition, designing different methods for mode changeover based on fault classification is necessary for appropriate changeover. This study presents a real-time fault monitoring and changeover system, which is based on the dual system design of countdown time-generating devices, as well as experiment on real-time fault monitoring and changeover based on fault inputs.

Performance Analysis of Ranging Techniques for the KPLO Mission

  • Park, Sungjoon;Moon, Sangman
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • In this study, the performance of ranging techniques for the Korea Pathfinder Lunar Orbiter (KPLO) space communication system is investigated. KPLO is the first lunar mission of Korea, and pseudo-noise (PN) ranging will be used to support the mission along with sequential ranging. We compared the performance of both ranging techniques using the criteria of accuracy, acquisition probability, and measurement time. First, we investigated the end-to-end accuracy error of a ranging technique incorporating all sources of errors such as from ground stations and the spacecraft communication system. This study demonstrates that increasing the clock frequency of the ranging system is not required when the dominant factor of accuracy error is independent of the thermal noise of the ranging technique being used in the system. Based on the understanding of ranging accuracy, the measurement time of PN and sequential ranging are further investigated and compared, while both techniques satisfied the accuracy and acquisition requirements. We demonstrated that PN ranging performed better than sequential ranging in the signal-to-noise ratio (SNR) regime where KPLO will be operating, and we found that the T2B (weighted-voting balanced Tausworthe, voting v = 2) code is the best choice among the PN codes available for the KPLO mission.

Risk Evaluation Based on the Time Dependent Expected Loss Model in FMEA (FMEA에서 시간을 고려한 기대손실모형에 기초한 위험 평가)

  • Kwon, Hyuck-Moo;Hong, Sung-Hoon;Lee, Min-Koo;Sutrisno, Agung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.104-110
    • /
    • 2011
  • In FMEA, the risk priority number(RPN) is used for risk evaluation on each failure mode. It is obtained by multiplying three components, i.e., severity, occurrence, and detectability of the corresponding failure mode. Each of the three components are usually determined on the basis of the past experience and technical knowledge. But this approach is not strictly objective in evaluating risk of a given failure mode and thus provide somewhat less scientific measure of risk. Assuming a homogeneous Poisson process for occurrence of the failures and causes, we propose a more scientific approach to evaluation of risk in FMEA. To quantify severity of each failure mode, the mission period is taken into consideration for the system. If the system faces no failure during its mission period, there are no losses. If any failure occurs during its mission period, the losses corresponding to the failure mode incurs. A longer remaining mission period is assumed to incur a larger loss. Detectability of each failure mode is then incorporated into the model assuming an exponential probability law for detection time of each failure cause. Based on the proposed model, an illustrative example and numerical analyses are provided.

Development of Mission Analysis and Design Tool for ISR UAV Mission Planning (UAV 감시정보정찰 임무분석 및 설계 도구 개발)

  • Kim, Hongrae;Jeon, Byung-Il;Lee, Narae;Choi, Seong-Dong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.181-190
    • /
    • 2014
  • The optimized flight path planning which is appropriate for UAV operation with high performance and multiplex sensors is required for efficient ISR missions. Furthermore, a mission visualization tool is necessary for the assessment of MoE(Measures of Effectiveness) prior to mission operation and the urgent tactical decision in peace time and wartime. A mission visualization and analysis tool was developed by combining STK and MATLAB, whose tool was used for UAV ISR mission analyses in this study. In this mission analysis tool, obstacle avoidance and FoM(Figure of Merit) analysis algorithms were applied to enable the optimized mission planning.

A Methodology for Evaluating Mission Suitability of Manned-Unmanned Aircraft Teaming for SEAD Missions (SEAD 임무 수행을 위한 유x무인기 협업 체계의 임무적합도 평가 방법론 연구)

  • Seo, Wonik;Lee, Hyun Moo;Kim, Jeong-Hun;Choi, Keeyoung;Jee, Cheol-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.935-943
    • /
    • 2020
  • This paper presents a methodology for evaluating suitability of a manned-unmanned aerial vehicle team for a complicated mission. The study identified vehicle performance, equipment performance and level of autonomy as the key factors that affect the mission effectiveness. A manned and an unmanned aircraft were compared, and their performance was quantized in these respects. SEAD was chosen as a representative manned-unmanned team mission. The SEAD mission was broken down to a sequence of tasks. Mission experts evaluated the importance of each mark item for the mission legs. Combining the results showed proper type of aircraft for each leg depending on the complexity, safety, and importance of the task. Finally, the whole mission plan was laid out as a time-based sequence which alleviate pilot workload significantly.

THE 'BOXER UPRISING' IN CHINA AND THE PAN-ISLAMIC POLICY OF THE OTTOMAN EMPIRE FROM A EUROPEAN PERSPECTIVE

  • LEE, HEE SOO
    • Acta Via Serica
    • /
    • v.3 no.1
    • /
    • pp.103-117
    • /
    • 2018
  • This article aims to examine European reactions against the Ottoman mission headed by Enver Pasha, who was dispatched to China during the 'Boxer Uprising' in 1901. Based on Western archival documents, we can find reliable and informative correspondence about the attitude of the European countries toward the sultan's mission and its pan-Islamic plans in China. The coming of the Ottoman mission caused great reaction in such European countries as Britain, France, Germany and Russia, who were engaged in a competitive power struggle for an influential political and economic position in China. They kept a close watch on the sultan's envoy to find out his secret mission on the one hand and tried to persuade Enver Pasha not to work against their advantage in China on the other. From time to time, Abdul Hamid II (r. 1876-1909), the sultan of the Ottoman Empire, sent China an official mission and secret agents, through whom he tried to subjugate Chinese Muslims for his own advantage. The significance for the Ottoman Empire of any success in penetrating China by way of a pan-Islamic approach cannot be overrated, not only for political advantage but also for commercial and cultural benefit. Like other European countries, Ottomans could retain or gain rights which might bring them opportunities for free trade in opium and in other commodities. The sultan believed that they would constitute a great political factor to his advantage, because most of the tens of millions of Chinese Muslims recognized the Ottoman sultan as their caliph and praised him in their Friday sermon (Khutuba). Taking these factors into consideration, he decided to dispatch the Enver Pasha mission during the Boxer Uprising (1898-1901), responding to the suggestion of German Kaiser Wilhelm II. However, when the Ottoman mission arrived in China, the uprising had already been suppressed. This unexpected situation made the envoy initiate meaningful contacts with Chinese Muslims during its stay in China.

Implementation and Performance Analysis of High-availability System for Mission Computer (임무컴퓨터를 위한 고가용 시스템의 구현 및 성능분석)

  • Jeong, Jae-Yeop;Park, Seong-Jong;Lim, Jae-Seok;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.47-56
    • /
    • 2008
  • MC(Mission Computer) performs important function in avionics system which tactic data processing, image processing and managing navigation system etc. In general, the fault of SPOF(Single Point Of Failure) in unity system can lead to failure of whole system. It can cause a failure of a mission and also can threaten to the life of the pilot. So, in this paper, we design the HA(Hight-availability) system so that dealing with the failure. And we use HA software like Heartbeat, Fake, DRBD and Bonding to manage HA system. Also we analyze the performance of HA system using the FDT(Fault Detection Time) for fast fault detection and MTTR(Mean Time To Repair) for mission continuity.

Establishment for Efficiency Air-To-Ground Air Operation Model in Link-16 (Link-16 기반의 효율적인 공대지 항공작전 모델 설계)

  • Lee, Hyeong-Heon;Jang, Hyeong-Jun;Kim, Yeong-Gu;Lim, Jae-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.861-868
    • /
    • 2010
  • As CAS, X-ATK, and INT models considered as the most typical Air-to-Ground operation models in ROKAF are mainly designed as the voice-centered system between aircraft and ground control facilities, it is critical to newly develop the Link-16 based model for the ROK-US combined operation between F-15K, AWACS, M-SAM, and KDX-III equipped with Link-16. Former studies had been limited to the CAS operation, and they had mainly focused on reducing the voice transmission time to exchange the information between each mission step with maintaining existing operation steps. Therefore, this paper makes up the weak point in former studies, thereby designing new Air-to-Ground operation model for CAS, X-ATK, INT mission using Enterprise Architecture OV6c, which enables both aircraft and ground control facilities or between aircraft to obtain the real-time information on the location, identification, armament and the real-time image data through the broadcasting function. Based on the analysis of new operation model, we come to a conclusion that by simultaneously exchanging the information on mission between nodes concerned through the broadcasting function of Link-16. It is possible to cut down superfluous steps among the mission steps, and to reduce the mission time. It is clear that it gives rise to improve the battle efficiency and the decision-making tempo as well as the battlefield situational awareness.

MTIF and parameter analysis of reliability for the redundant digital system (디지탈여유 시스템에서의 신뢰도를 위한 MTIF및 패라메타 해석)

  • 고명삼;채수익
    • 전기의세계
    • /
    • v.28 no.7
    • /
    • pp.60-66
    • /
    • 1979
  • In this paper we deal with a hardware redundency, using the replications of an original module to enhance the reliability of the system in view of static and dynamic redundancy. As results of the study the following facts have been proved that (1) if the mission time is small (T .neq. 0.5), the effect of spare modules cannot be expected significantly, (2) for the small mission time (0.1 .neq. T .neq. 0.3) the SPR system is more reliable than the other redundant systems. In addition to above facts, it is also proved that for the large mission time (T=1), the dynamic redundant system is more reliable than the static redundant system, and that the SR system is more reliable than the HR system in the dynamic redundant system.

  • PDF

Determination of the Mean Size of Cannibalization Aircraft (부속유용항공기의 규모결정)

  • Lee Gyu-Bok;Ha Seok-Tae
    • Journal of the military operations research society of Korea
    • /
    • v.16 no.1
    • /
    • pp.113-129
    • /
    • 1990
  • This paper presents the simulation model to decide the mean size of cannibalization aircraft (MSCA) under steady state when an airbase makes use of cannibalization to support the spare parts of an airfleet. In this model, the essential factors such as mission requirements, mission time, failure time, repair time, repair capability, inventory policy, cannivalization rule are considered. The model is constructed with above factors and actual airbase operating rules for a basis. Because of the tangled interdependencies among the each factors, it is inevitable to construct the model by the simulation technique. The mission and support system of the airbase is considered as a closed queueing network with a finite number of unit The troubled aircrafts are repaired in accordance with the priorities that are determined by their repair times. The illustrative example of the model, using the actual data of xx-airbase, is presented. The model would be a useful tool not only to determine the MSCA and the size of scheduled maintenance aircraft but to evaluate the NORS (not operationally ready supply) rate and the availability of an airfleet.

  • PDF