• Title/Summary/Keyword: Minimum inhibitory concentration

Search Result 630, Processing Time 0.026 seconds

Addictive Effects of Ecklonia cava Methanol and its Solvent-soluble Extract Against Antibiotic-resistant Cutibacterium acnes Causing Acne Vulgaris (항생제 내성 Cutibacterium acnes에 대한 감태(Ecklonia cava) 추출물의 항균 시너지 효과)

  • Eun-Song Kim;Ju-Won Ryu;Hyo-Bin Kim;Ho-Su Song;Na-Young Yoon;Kil Bo Shim;Hye Jin Hwang;Young-Mog Kim;Sung-Hwan Eom
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.3
    • /
    • pp.293-299
    • /
    • 2023
  • Acne vulgaris is often associated with acne-related bacteria such as Cutibacterium acnes. In this study, we investigated the antibacterial effects of the methanol extract of the algae Ecklonia cava and its solvent-soluble extract against C. acnes. Among five solvent fractions, the ethyl acetate (EtOAc) fraction exhibited the strongest antibacterial activity against C. acnes. Furthermore, the EtOAc-soluble extract exhibited the highest total phenolic contents among the five solvent fractions tested. The EtOAc subfraction 07 (Fr. 07) extract showed the highest antibacterial effect against C. acnes and isolated C. acnes along with minimum inhibitory concentration (MIC) ranging from 32 to 64 ㎍/mL. Additionally, MICs of antibiotics against antibiotic-resistant C. acnes strains were substantially reduced when antibiotics were combined with Fr. 07, suggesting that Fr. 07 restore the antibacterial activity of the antibiotics. The fractional inhibitory concentration indices clearly revealed an additive synergistic effect of Fr. 07 with antibiotics. The results of the present study suggest a potential role for E. cava in the control of infections related to acne vulgaris.

Inhibition of Klebsiella pneumoniae ATCC 13883 Cells by Hexane Extract of Halimeda discoidea (Decaisne) and the Identification of Its Potential Bioactive Compounds

  • Supardy, Nor Afifah;Ibrahim, Darah;Sulaiman, Shaida Fariza;Zakaria, Nurul Aili
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.872-881
    • /
    • 2012
  • The inhibitory effect of the Klebsiella pneumoniae ATCC 13883 strain caused by the hexane extract of Halimeda discoidea (Nor Afifah et al., 2010) was further evaluated by means of the microscopy view and its growth curves. The morphological changes of the K. pneumoniae ATCC 13883 cells were observed under the scanning electron microscope (SEM) and transmission electron microscope (TEM) after they were treated at minimum inhibitory concentration (MIC; 0.50 mg/ml) (Nor Afifah et al., 2010) for 12, 24, and 36 h. The results showed the severity of the morphological deteriorations experienced by the treated cells. The killing curve assay was performed for 48 h at three different extract concentrations (1/2 MIC, MIC, and 2 MIC). An increase in the extract concentration of up to 2 MIC value did significantly reduce the number of cells by approximately 1.9 $log_{10}$, as compared with the control. Identification of the potential compounds of the extract responsible for the antibacterial activity was carried out through the gas chromatography-mass spectrum (GC-MS) analysis of the active subfraction, and the compound E-15-heptadecenal was identified and suggested as the most potential antibacterial compound of this extract. The subsequent cellular degenerations showed by the data might well explain the inhibitory mechanisms of the suggested antibacterial compound. All of these inhibitory effects have further proven the presence of an antibacterial compound within H. discoidea that can inhibit the growth of K. pneumoniae ATCC 13883.

Antimicrobial and Anti-Biofilm Activities of the Methanol Extracts of Medicinal Plants against Dental Pathogens Streptococcus mutans and Candida albicans

  • Choi, Hyoung-An;Cheong, Dae-Eun;Lim, Ho-Dong;Kim, Won-Ho;Ham, Mi-Hyoun;Oh, Myung-Hwan;Wu, Yuanzheng;Shin, Hyun-Jae;Kim, Geun-Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1242-1248
    • /
    • 2017
  • Several medicinal plants are ethnomedically used in Korea as agents for treating infection, anti-inflammation, and pain relief. However, beyond typical inhibitory effects on cell growth, little is known about the potential anti-biofilm activity of these herbs, which may help to prevent cavities and maintain good oral health. This study aimed to investigate the antimicrobial and anti-biofilm activities of the methanol extracts of 37 Korean medicinal plants against dental pathogens Streptococcus mutans and Candida albicans, which synergize their virulence so as to induce the formation of plaque biofilms in the oral cavity. The antimicrobial activities were investigated by broth dilution and disk diffusion assay. The anti-biofilm and antioxidant activities were evaluated based on the inhibitory effect against glucosyltransferase (GTase) and the DPPH assay, respectively. Among 37 herbs, eight plant extracts presented growth and biofilm inhibitory activities against both etiologic bacteria. Among them, the methanol extracts (1.0 mg/ml) from Camellia japonica and Thuja orientalis significantly inhibited the growth of both bacteria by over 76% and over 83% in liquid media, respectively. Minimum inhibitory concentration (MIC) values of these methanol extracts were determined to be 0.5 mg/ml using a disk diffusion assay on solid agar media. Biofilm formation was inhibited by more than 92.4% and 98.0%, respectively, using the same concentration of each extract. The present results demonstrate that the medicinal plants C. japonica and T. orientalis are potentially useful as antimicrobial and anti-biofilm agents in preventing dental diseases.

Synergistic Inhibition of Membrane ATPase and Cell Growth of Helicobacter pylori by ATPase Inhibitors

  • Ki, Mi-Ran;Yun, Soon-Kyu;Lim, Wang-Jin;Hong, Bum-Shik;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.414-421
    • /
    • 1999
  • Helicobacter pylori were found to be resistant to azide but sensitive to vanadate, suggesting that defect in the P-type ATPase activity rather than F-type ATPase would be lethal to cell survival or growth. To elucidate the relationship between this enzyme inhibition and H. pylori death, we determined the effect of omeprazole (OMP) plus vanadate on enzyme activity and cell growth. The minimum inhibitory concentration (MIC; ca. 0.8$\mu$mol/disk) of vanadate for H. pylori growth was lowered over l0-fold with the aid of OMP, whereby its inhibitory potential toward the P-type ATPase activity was diametrically increased. Alternatively, we found that this enzyme activity was essential for active transport in H. pylori. From these observations, we strongly suggest that the immediate cause of the growth inhibition of H. pylori cells with OMP and/or vanadate might be defective in the cell's active transport due to the lack of P-type ATPase activity. From the spectral data with circular dichroism (CD) spectroscopy, we found that activated OMP (OAS) at concentration below MIC did not disrupt helical structures of membrane proteins. Separately, we determined the cytopathic effect of OAS by SDS-PAGE, indicating the change in the production of cytoplasmic protein but not cell membrane.

  • PDF

Anti-microbial Activity of Saussurea lappa C.B. Clarke Roots

  • Chang, Kyung-Mi;Choi, Soo-Im;Chung, Sophia J.;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.376-380
    • /
    • 2011
  • We investigated the total phenolic and flavonoid contents and the antimicrobial activity of ethanol extracts obtained from Saussurea lappa C.B. Clarke. The ethanol extracts of S. lappa C.B. Clarke were fractionated with various solvents (n-hexane, chloroform, and n-butanol). The antimicrobial activity of S. lappa C.B. Clarke was examined by disc-diffusion and micro-dilution susceptibility assays with six food-borne pathogens, and compared to that of the synthetic antibiotics. It is found that the S. lappa C.B. Clarke ethanol extract and n-hexane fraction have strong activity against B. cereus and V. parahaemolyticus strains compared to ampicillin. The inhibitory concentration ($IC_{50}$) values of hexane fraction against L. monocytogenes, B. cereus, and B. subtilis were 62.5, 250 and 500 ppm, respectively. Therefore, these data suggest that S. lappa C.B. Clarke may be useful as antimicrobial agents against food-borne pathogens.

Antimicrobial Effect of Scutellariae Radix and Its Thermal Stability (황금 추출물의 항균효과 및 열안정성)

  • Kim, Jong-Myoung;Lee, Chul-Won;Ahn, Yong-Tae;Lee, Ho;Kim, Chul;Kim, Hyung-Woo;Cho, Su-In;An, Won-Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.325-329
    • /
    • 2012
  • The present study investigated the antimicrobial properties of medicinal herbs including Scutellariae Radix (SR: dried root of Scutellariae bicalensis Georgi). Among hot-water extracts of medicinal herbs tested in this study, SR extract showed the most potent antimicrobial activity with minimum inhibitory concentration (MIC) of 0.625 mg/mL. In particular, synergistic effects of antimicrobial activity were observed upon combined application of SR and chitooligosaccharide as indicated by MIC of 0.125 mg/mL and FIC (fractional inhibitory concentration) index of 0.45. Thermal stability analysis indicated that the components responsible for antimicrobial activity was stable for 8 months at $45^{\circ}C$. Antimicrobial activity was proven to be effective in foods as well as in cosmetics as comparable to that of the chemical preservatives.

Effect of Prunus mume Extract Containing Beverages on the Proliferation of Food-borne Pathogens (매실 추출물을 함유한 음료가 식중독 유발균의 성장에 미치는 영향)

  • 배지현;김기진
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.9 no.2
    • /
    • pp.214-222
    • /
    • 1999
  • Prunus mume has been used for the folk medicine by many old civilizations to treat food-borne diseases or enteric disorders. The purpose of this study was to investigate the antimicrobial activity of beverages containing Prunus mume extracts against Staphylococcus aureus, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Escherichia coli and Pseudomonas aeruginosa. Seven different types of Prunus mume extracts containing beverages have been prepared for the test in which minimum inhibitory concentration for each microorganism has been determined by serial dilution method using either TSA or TSB medium. Pseudomonas aeruginosa showed least resistance and 0.3g/$m\ell$ concentrations of 5% Prunus mume extracts containing beverage had antimicrobial property against the organism. Beverages containing more than 15% of Prunus mume extracts showed antimicrobial activity against all tested microorganisms at the MIC value of less than 0.25g/$m\ell$. The effect of Prunus mume on the growth of food-borne pathogens has been also studied using a spectrophotometer. In the growth assay, each of the Prunus mume extracts containing beverage was added to the medium at the concentration of 25% (v/v). Beverage containing 20% Prunus mume extracts showed inhibitory effect on the growth of all tested microorganisms.

  • PDF

Antimicrobial Activity of Resveratrol Oligomers and Flavonoids from the Stems of Vitis coignetiae Pulliat and the Seeds of Perilla frutescens (L.) Britton (머루 줄기와 자소자로부터 분리한 Resveratrol 올리고머와 Flavonoid의 항균효과)

  • Son, Rak-Ho;Chin, Hwi-Seung;Ham, Ah-Rom;Mar, Woong-Chon;Nam, Kung-Woo
    • YAKHAK HOEJI
    • /
    • v.54 no.1
    • /
    • pp.22-26
    • /
    • 2010
  • We studied the antimicrobial activities of five compounds isolated from the stems of Vitis coignetiae Pulliat and the seeds of Perilla frutescens (L.) Britton. Based on spectroscopic evidence, compounds 1 to 5 were characterized as resveratrol, $\varepsilon$-viniferin, ampelopsin E, apigenin, and luteolin, respectively. The antimicrobial activities against Gram-positive (Staphylococcus aureus) and -negative (Pseudomonas aeruginosa) bacteria and a fungus (Candida albicans) were investigated using the disc diffusion and broth dilution methods. C. albicans was not inhibited by the five compounds. Compounds 2 and 5 had significant anti-microbial activity against S. aureus, and the 50% inhibitory concentration ($IC_{50}$) of compound 2 against S. aureus was 7.2 ${\mu}M$. Compounds 4 and 5 significantly inhibited P. aeruginosa and the minimum inhibitory concentration (MIC) of compounds 2 and 5 was 0.07 and 2.0 ${\mu}M$, respectively. Compounds 2, 4, and 5 had strong anti-microbial activity against S. aureus and P. aeruginosa.

Antimicrobial Potential of Moringa oleifera Seed Coat and Its Bioactive Phytoconstituents

  • Arora, Daljit Singh;Onsare, Jemimah Gesare
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.152-161
    • /
    • 2014
  • The in vitro antimicrobial potential of the unexplored Moringa oleifera seed coat (SC) was evaluated against some Gram-positive and Gram-negative bacteria and yeast pathogens. Antimicrobial studies with various solvent extracts indicated ethyl acetate to be the best extractant, which was used for the rest of the antimicrobial studies as it tested neither toxic nor mutagenic. Gram-positive bacteria including a methicillin resistant Staphylococcus aureus (MRSA) strain were more susceptible with a minimum inhibitory concentration (MIC) range of 0.03-0.04 mg/ml. The antimicrobial pharmacodynamics of the extract exhibited both concentration-dependent and time-dependent killing. Most of the test organisms exhibited a short post antibiotic effect (PAE) except Enterococcus faecalis, Staphylococcus aureus, and Klebsiella pneumoniae 1, which exhibited longer PAEs. Amongst the major phytoconstituents established, flavonoids, diterpenes, triterpenes and cardiac glycosides exhibited inhibitory properties against most of the test organisms. The identified active phytochemicals of the M. oleifera seed coat exhibited antimicrobial potential against a wide range of medically important pathogens including the multidrug-resistant bugs. Hence, the M. oleifera seed coat, which is usually regarded as an agri-residue, could be a source of potential candidates for the development of drugs or drug leads of broad spectrum that includes multidrug-resistant bugs, which are one of the greatest concerns of the $21^{st}$ century.

Synergistic Antibacterial Activity of an Active Compound Derived from Sedum takesimense against Methicillin-Resistant Staphylococcus aureus and Its Clinical Isolates

  • Jeong, Eun-Tak;Park, Seul-Ki;Jo, Du-Min;Khan, Fazlurrahman;Choi, Tae Ho;Yoon, Tae-Mi;Kim, Young-Mog
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1288-1294
    • /
    • 2021
  • There are a growing number of reports of hospital-acquired infections caused by pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). Many plant products are now being used as a natural means of exploring antimicrobial agents against different types of human pathogenic bacteria. In this research, we sought to isolate and identify an active molecule from Sedum takesimense that has possible antibacterial activity against various clinical isolates of MRSA. NMR analysis revealed that the structure of the HPLC-purified compound was 1,2,4,6-tetra-O-galloyl-glucose. The minimum inhibitory concentration (MIC) of different extract fractions against numerous pathogenic bacteria was determined, and the actively purified compound has potent antibacterial activity against multidrug-resistant pathogenic bacteria, i.e., MRSA and its clinical isolates. In addition, the combination of the active compound and β-lactam antibiotics (e.g., oxacillin) demonstrated synergistic action against MRSA, with a fractional inhibitory concentration (FIC) index of 0.281. The current research revealed an alternative approach to combating pathogenesis caused by multi-drug resistant bacteria using plant materials. Furthermore, using a combination approach in which the active plant-derived compound is combined with antibiotics has proved to be a successful way of destroying pathogens synergistically.