Browse > Article
http://dx.doi.org/10.4014/kjmb.1402.02003

Antimicrobial Potential of Moringa oleifera Seed Coat and Its Bioactive Phytoconstituents  

Arora, Daljit Singh (Microbial Technology Laboratory, Department of Microbiology, Guru Nanak Dev University)
Onsare, Jemimah Gesare (Microbial Technology Laboratory, Department of Microbiology, Guru Nanak Dev University)
Publication Information
Microbiology and Biotechnology Letters / v.42, no.2, 2014 , pp. 152-161 More about this Journal
Abstract
The in vitro antimicrobial potential of the unexplored Moringa oleifera seed coat (SC) was evaluated against some Gram-positive and Gram-negative bacteria and yeast pathogens. Antimicrobial studies with various solvent extracts indicated ethyl acetate to be the best extractant, which was used for the rest of the antimicrobial studies as it tested neither toxic nor mutagenic. Gram-positive bacteria including a methicillin resistant Staphylococcus aureus (MRSA) strain were more susceptible with a minimum inhibitory concentration (MIC) range of 0.03-0.04 mg/ml. The antimicrobial pharmacodynamics of the extract exhibited both concentration-dependent and time-dependent killing. Most of the test organisms exhibited a short post antibiotic effect (PAE) except Enterococcus faecalis, Staphylococcus aureus, and Klebsiella pneumoniae 1, which exhibited longer PAEs. Amongst the major phytoconstituents established, flavonoids, diterpenes, triterpenes and cardiac glycosides exhibited inhibitory properties against most of the test organisms. The identified active phytochemicals of the M. oleifera seed coat exhibited antimicrobial potential against a wide range of medically important pathogens including the multidrug-resistant bugs. Hence, the M. oleifera seed coat, which is usually regarded as an agri-residue, could be a source of potential candidates for the development of drugs or drug leads of broad spectrum that includes multidrug-resistant bugs, which are one of the greatest concerns of the $21^{st}$ century.
Keywords
Antimicrobial; Moringa oleifera; antimicrobial pharmacodynamics; phytoconstituents; MIC; toxicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alsaba FR, Furqan A, Khan IA, Shawl AS, Arora DS, Shah BA, et al. 2011. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-${\beta}$-boswellic acid from Boswellia serrata. BMC Microbiol. 11: 54.   DOI
2 Abdel-Azim NS, Hammouda FM, Hunkler D, Rimpler H. 1996. Re-investigation of the cardenolide glycosides from Gomphocarpus sinaicus. Phytochemistry 42: 523-529.   DOI   ScienceOn
3 Abdulmoneim MS, Abu IE. 2011. An in vitro antimicrobial activity of Moringa oleifera Lam. seed extracts against different groups of microorganisms. Aust. J. Basic Appl. Sci. 5: 129 -134.
4 Adedapo AA, Mogbojuri OM, Emikpe BO. 2009. Safety evaluations of the aqueous extract of the leaves of Moringa oleifera in rats. J. Med. Plants Res. 3: 586-591.
5 Alviano DS, Alviano CS. 2009. Plant extracts: search for new alternatives to treat microbial diseases. Curr. Pharm. Biotechnol. 10: 106-121.   DOI
6 Manivasagaperumal R, Vonoth B, Balamurugan S. 2012. Phytochemical analysis and antibacterial activity of Moringa oleifera Lam. Int. J. Res. Biol. Sci. 2: 98-102.
7 Mehdi H, Razieh Y, Marjan ZY, Laleh HR, Fereidoum A. 2011 A new diterpene extracted from Dapline mucronata, effect on human K562 and CCRF-CEM lines. J. Cancer Ther. 2: 71-75.   DOI
8 Mortelmans K, Zeiger E. 2000. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 455: 29-60.   DOI   ScienceOn
9 Obadoni BO, Ochuko PO. 2001. Phytochemical studies and comparative efficacy of the crude extracts of some homeostatic plants in Edo and Delta States of Nigeria. Global J. Pure Appl. Sci. 8: 203-208.
10 Onsare JG, Kaur H, Arora DS. 2013. Antimicrobial activity of Moringa oleifera from different locations against some human pathogens. Acad. J. Med. Plants 1: 80-91.
11 Obasi NL, Egbuonu ACC, Ukoha PO, Ejikeme PM. 2010. Comparative phytochemical and antimicrobial screening of some solvent extracts of Samanea saman pods. Afr. J. Pure Appl. Chem. 4: 206-212.
12 Odenholt I, Lowdin E, Cars O. 2001. Pharmacodynamics of telithromycin in vitro against respiratory tract pathogens. Antimicrob. Agents Chemother. 45: 23-29.   DOI
13 O'Donnell JA, Gelone SP. 2000. Fluoroquinolones. Inf. Dis. Clin. North Am. 14: 489-513.   DOI
14 Purnachandra Rao CH, Arun T. 2011. Phytochemical screening and antibacterial activity of M. oleifera Lam. against Proteus mirabilis from urinary tract infected patients. Int. J. PharmaTech. Res. 3: 2118-2123.
15 Rahman MM, Sheikh MMI, Sharmin SA, Islam MS, Rahman MA, Rahman MM, et al. 2009. Antibacterial activity of leaf juice and extracts of Moringa oleifera Lam. against some human pathogenic bacteria. CMU J. Nat. Sci. 8: 219.
16 Roopashree TS, Romero CD, Choph SE, Buck G, Martinez E, Garcia M, et al. 2008. Antibacterial activity of anti-psoriatic herbs: Cassia tora, Momordica charantia and Calendula officinalis. Int. J. Appl. Res. Nat. Prod. 1: 20-28.
17 Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH. 1985. Natural plant chemicals: Sources of industrial and medicinal materials. Science 228: 1154-1160.   DOI
18 Arora DS, Kaur J. 1999. Antimicrobial activity of spices. Int. J. Antimicrob. Agents 12: 257-262.   DOI   ScienceOn
19 Arora DS, Onsare JG, Kaur H. 2013. Bioprospecting of Moringa (Moringaceae): Microbiological perspective. J. Pharmacog. Phytochem. 1: 1193-215.
20 Ashong JO, Brown DL. 2011. Acute toxicity of aqueous extracts of Moringa oleifera leaf in growing poultry. J. Anim. Sci. 89: 577-580.
21 Bennett RN, Wallsgrove RM. 1994. Secondary metabolites in plant defense mechanisms. Phytother. Res. 127: 617-633.
22 Caceres A, Saravia A, Rizzo S, Zabala L, Leon ED, Nave F. 1992. Pharmacologic properties of Moringa oleifera 2: Screening for antispasmodic, anti-inflammatory and diuretic activity. J. Ethnopharmacol. 36: 233-237.   DOI   ScienceOn
23 Boham BA, Kocipai-Abyazan R. 1974. Flavonoids and condensed tannins from leaves of Hawaiian Vaccinium vaticulatum and V. calycinium. Pac. Sci. 48: 458-463.
24 Bojana B, Damjan H, Danica D, Marin B, Franc P. 2000. Isolation and quantification of triterpenoid acids from Ganoderma applanatum of Istrian origin. Food Technol. Biotechnol. 38: 11-18.
25 Bukar A, Uba A, Oyeyi T. 2010. Antimicrobial profile of Moringa oleifera Lam. extracts against some food-borne microorganisms. Bayero J. Pure Appl. Sci. 3: 43-48.
26 Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. 1993. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 14: 359-364.   DOI   ScienceOn
27 Craig WA, Gudmundsson S. 1996. Post antibiotic effect, pp. 296-32. In: Lorian V, (ed), Antibiotics in Laboratory Medicine, 4th Eds. Williams and Wilkins Co. Baltimore MD.
28 Croteau R, Kutchan TM, Lewis, NG. 2000. Natural products (secondary metabolites), pp. 1250-1318. In: Buchanan B, Gruissem W, Jones R (eds), Biochemistry and Molecular Biology of Plants. American Society of Plant Physiology, Rockville, MD.
29 Ebi GC, Afieroho OE. 2011. Phytochemical and antimicrobial studies on Detarium microcarpum Guill and Sperr (Caesalpinioceae) seeds coat. Afr. J. Biotechnol. 10: 455-462.
30 Dewangan G, Koley KM, Vadlamudi VP, Mishra A, Poddar A, Hirpurkar SD. 2010. Antibacterial activity of Moringa oleifera root bark. J. Chem. Pharm. Res. 2: 424-428.
31 Edeoga HO, Okwu DE, Mbaebie BO. 2005. Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol. 4: 685-688.   DOI
32 Finar IL. 1986. Organic Chemistry: Stereochemistry and the Chemistry of Natural Products, Vol. 2. Longman, Singapore.
33 Grabow WOK, Slabbert JL, Morgan WSG, Jahn SAA. 1985. Toxicity and mutagenicity evaluation of water coagulated with Moringa oleifera seed preparations using fish, protozoan, bacterial, coliphage, enzyme and Ames Salmonella assays. Wat. SA 11: 9-14.
34 Eliopoulus GM, Moellering RCJ. 1996. Antimicrobial combinations, pp. 330-396. In: Lorian V (ed), Antibiotics in Laboratory Medicine, 4th Ed. Baltimore, MD: The Williams.
35 Eloff JN. 2004. Quantifying the bioactivity of the plant extracts during screening and bioassay- guided fractionation. Phytomedicine 11: 370-371.   DOI
36 Harborne AL. 1998. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 3rd Eds. Chapman and Hall Publishers, London UK.
37 Kasolo JN, Bimenya GS, Ojok L, Ogwal-okeng JW. 2011. Phytochemicals and acute toxicity of M. oleifera roots in mice. J. Pharmacog. Phytother. 3: 38-42.
38 Kokate CK. 1999 Practical Pharmacognosy, 4th Eds. Vallabh Prakashan Publication, New Delhi, India.
39 Mahady GB, Fong HHS, Farnsworth NR. 2005. Fructus chebulae, WHO Monographs on Selected Medicinal Plants, Volume IV. Geneva, Switzerland, WHO Publications Office.
40 The Plant List, Version 1. Published on the Internet; http:// www.theplantlist.org/ (accessed 18th September, 2012).
41 Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. 2011. Phytochemical screening and extraction: A review. Int. Pharm. Sci. 1: 89-106.
42 Trease GE, Evans WC. 1989. Pharmacognsy. 11th Eds. Brailliar Tiridel Can. Macmillian Publishers.
43 Vermani K, Garg S. 2002. Herbal medicine for sexually transmitted diseases and AIDS. J. Ethnopharmacol. 80: 49-66.   DOI   ScienceOn
44 Vieira MC, Lelis CCR, Silva BC, Oliveira GL. 2011. Tannin extraction from the bark of Pirius oocarpa with sodium carbonate and sodium bisulfate. Floresta e Ambiente 18: 1-8.   DOI
45 World Health Organization, 2002. Traditional Medicine Growing Needs and Potential - WHO Policy Perspectives on Medicines, No. 002, May, World Health Organization, Geneva, Switzerland.