Browse > Article
http://dx.doi.org/10.4014/jmb.2105.05015

Synergistic Antibacterial Activity of an Active Compound Derived from Sedum takesimense against Methicillin-Resistant Staphylococcus aureus and Its Clinical Isolates  

Jeong, Eun-Tak (DYNE SOZE Co., Ltd.)
Park, Seul-Ki (Institute of Food Science, Pukyong National University)
Jo, Du-Min (Department of Food Science and Technology, Pukyong National University)
Khan, Fazlurrahman (Research Center for Marine Integrated Bionics Technology, Pukyong National University)
Choi, Tae Ho (DYNE SOZE Co., Ltd.)
Yoon, Tae-Mi (DYNE SOZE Co., Ltd.)
Kim, Young-Mog (Department of Food Science and Technology, Pukyong National University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.9, 2021 , pp. 1288-1294 More about this Journal
Abstract
There are a growing number of reports of hospital-acquired infections caused by pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). Many plant products are now being used as a natural means of exploring antimicrobial agents against different types of human pathogenic bacteria. In this research, we sought to isolate and identify an active molecule from Sedum takesimense that has possible antibacterial activity against various clinical isolates of MRSA. NMR analysis revealed that the structure of the HPLC-purified compound was 1,2,4,6-tetra-O-galloyl-glucose. The minimum inhibitory concentration (MIC) of different extract fractions against numerous pathogenic bacteria was determined, and the actively purified compound has potent antibacterial activity against multidrug-resistant pathogenic bacteria, i.e., MRSA and its clinical isolates. In addition, the combination of the active compound and β-lactam antibiotics (e.g., oxacillin) demonstrated synergistic action against MRSA, with a fractional inhibitory concentration (FIC) index of 0.281. The current research revealed an alternative approach to combating pathogenesis caused by multi-drug resistant bacteria using plant materials. Furthermore, using a combination approach in which the active plant-derived compound is combined with antibiotics has proved to be a successful way of destroying pathogens synergistically.
Keywords
Antibiotic resistance; clinical isolates; methicillin-resistant; Sedum takesimense; Staphylococcus aureus; synergy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bensouici C, Kabouche A, Karioti A, Ozturk M, Duru ME, Bilia AR, et al. 2016. Compounds from Sedum caeruleum with antioxidant, anticholinesterase, and antibacterial activities. Pharm. Biol. 54: 174-179.   DOI
2 Lee DS, Kang MS, Hwang HJ, Eom SH, Yang JY, Lee MS, et al. 2008. Synergistic effect between dieckol from Ecklonia stolonifera and β-lactams against methicillin-resistant Staphylococcus aureus. Biotechnol. Bioprocess. Eng. 13: 758-764.   DOI
3 Cantoni LAMJ, Wenger A. Glauser MP, Bille J. 1989. Comparative efficacy of amoxicillin-clavulanate, cloxacillin, and vancomycin against methicillin-sensitive and methicillin-resistant Staphylococcus aureus endocarditis in rats. J. Infect. Dis. 159: 989-993.   DOI
4 Cote H, Pichette A, Simard F, Ouellette ME, Ripoll L, Mihoub M, et al. 2019. Balsacone C, a new antibiotic targeting bacterial cell membranes, inhibits clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) without inducing resistance. Front. Microbiol. 10: 2341.   DOI
5 Pai V, Rao VI, Rao SP. 2010. Prevalence and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus [MRSA] isolates at a tertiary care hospital in Mangalore, South India. J. Lab. Physicians 2: 82-84.   DOI
6 Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. Pharm. Ther. 40: 277-283.
7 Center for Disease Control (CDC). Antibiotic Resistance Threats in the United States. http://www.cdc.gov/drugresistance/threatreport-2013/. Accesed Jan. 23, 2015.
8 Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28: 603-661.   DOI
9 Kaur DC, Chate SS. 2015. Study of antibiotic resistance pattern in methicillin resistant Staphylococcus aureus with special reference to newer antibiotic. J. Glob. Infect. Dis. 7: 78-84.   DOI
10 French GL. 2010. The continuing crisis in antibiotic resistance. Int. J. Antimicrob. Agents 36: S3-S7.   DOI
11 Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. 2019. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: a brief review. AIMS Microbiol. 5: 117-137.   DOI
12 Sato M, Tanaka H, Yamaguchi R, Kato K, Etoh H. 2004. Synergistic effects of mupirocin and an isoflavanone isolated from Erythrina variegata on growth and recovery of methicillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 24: 241-246.   DOI
13 Choi JG, Kang OH, Brice OO, Lee YS, Chae HS, Oh YC, et al. 2010. Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Foodborne Pathog. Dis. 7: 435-441.   DOI
14 Yoon MY, Choi NH, Min BS, Choi GJ, Choi YH, Jang KS, et al. 2011. Potent in vivo antifungal activity against powdery mildews of pregnane glycosides from the roots of Cynanchum wilfordii. J. Agric. Food. Chem. 59: 12210-12216.   DOI
15 Gangadhar M, Bhavana P, Sunil Y, Datta S. 2011. Isolation and characterisation of gallic acid from Terminalia bellerica and its effect on carbohydrate regulatory system in vitro. Int. J. Res. Ayurveda. Pharm. 2: 559-562.
16 Wang KJ, Yang CR, Zhang YJ. 2007. Phenolic antioxidants from Chinese toon (fresh young leaves and shoots of Toona sinensis). Food Chem. 101: 365-371.   DOI
17 Vu TT, Kim JC, Choi YH, Choi GJ, Jang KS, Choi TH, et al. 2013. Effect of gallotannins derived from Sedum takesimense on tomato bacterial wilt. Plant Dis. 97: 1593-1598.   DOI
18 Aqil F, Khan MSA, Owais M, Ahmad I. 2005. Effect of certain bioactive plant extracts on clinical isolates of β-lactamase producing methicillin resistant Staphylococcus aureus. J. Basic. Microbiol. 45: 106-114.   DOI
19 Cha JD, Lee JH, Choi KM, Choi SM, Park JH. 2014. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus. Evid. Based Complement. Alternat. Med. 2014: 450572.
20 Yoon MY, Choi GJ, Choi YH, Jang KS, Park MS, Cha B, et al. 2010. Effect of polyacetylenic acids from Prunella vulgaris on various plant pathogens. Lett. Appl. Microbiol. 51: 511-517.   DOI
21 Tanaka T, Nonaka GI, Nishioka I. 1985. Punicafolin, an ellagitannin from the leaves of Punica grantum. Phytochemistry 24: 2075-2078.   DOI
22 Compean KL, Ynalvez RA. 2014. Antimicrobial activity of plant secondary metabolites: a review. Res. J. Med. Plant. 8: 204-213.   DOI
23 Aqil F, Ahmad I, Owais M. 2006. Evaluation of anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and synergy of some bioactive plant extracts. Biotechnol. J. 1: 1093-1102.   DOI
24 Lee DS, Eom SH, Kim YM, Kim HS, Yim MJ, Lee SH, et al. 2014. Antibacterial and synergic effects of gallic acid-grafted-chitosan with β-lactams against methicillin-resistant Staphylococcus aureus (MRSA). Can. J. Microbiol. 60: 629-638.   DOI
25 Yang CM, Cheng HY, Lin TC, Chinag LC, Lin CC. 2007. The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-β-D-flucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J. Ethnopharmacol. 110: 555-558.   DOI
26 Yuan GQ, Li QQ, Qin J. 2012. Isolation of methyl gallate from Toxicodendron sylvestre and its effect on tomato bacterial wilt. Plant Dis. 96: 1143-1147   DOI
27 Dickson RA, Houghton PJ, Hyhinds PJ, Gibbon S. 2006. Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Bail., Securinega virosa Roxb. and Wlld. and Microglossa pyrifolia Lam. Phytother. Res. 20: 41-45.   DOI
28 Wikler MA. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI (NCCLS). 26: M7-A9.
29 Hisham DMN, Lip JM, Noh JM, Normah A, Nabilah MN. 2011. Identification and isolation of methyl gallate as a polar chemical marker for Labisia pumila Benth. J. Trop. Agric. Food. Sci. 39: 279-284.
30 Tanaka T, Nonaka GI, Nishioka I. 1983. 7-O-Galloyl-(+)-catechin and 3-O-galloylprocyanidin B-3 from Sanguisorba officinalis. Phytochemistry 22: 2575-2578.   DOI
31 Thuong PT, Kang JH, Na KM, Jin YW, Youn JU, Seong HY, et al. 2007. Anti-oxidant constituents from Sedum takesimense. Phytochemistry 68: 2432-2438.   DOI
32 Xin-Min C, Yoshida T, Hatano T, Fukushima M, Okuda T. 1987. Galloylarbutin and other polyphenols from Bergenia purpurascens. Phytochemistry 26: 515-517.   DOI
33 Odontuya, G. 2016. Anti-oxidative, acetylcholinesterase and pancreatic lipase inhibitory activities of compounds from Dasiphora fruticosa Myricaria alopecuroides and Sedum hybridum. Mong. J. Chem. 17: 42-49.   DOI
34 Norden CW, Wentzel H, Keleti E. 1979. Comparison of techniques for measurement of in vitro antibiotic synergism. J. Infect. Dis. 140: 629-633.   DOI
35 Yu HH, Kim KJ, Cha JD, Kim HK, Lee YE, Choi NY, et al. 2005. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food. 8: 454-461.   DOI