Browse > Article
http://dx.doi.org/10.4014/jmb.1111.11053

Inhibition of Klebsiella pneumoniae ATCC 13883 Cells by Hexane Extract of Halimeda discoidea (Decaisne) and the Identification of Its Potential Bioactive Compounds  

Supardy, Nor Afifah (Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia)
Ibrahim, Darah (Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia)
Sulaiman, Shaida Fariza (Phytochemical Laboratory, School of Biological Sciences, Universiti Sains Malaysia)
Zakaria, Nurul Aili (Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.6, 2012 , pp. 872-881 More about this Journal
Abstract
The inhibitory effect of the Klebsiella pneumoniae ATCC 13883 strain caused by the hexane extract of Halimeda discoidea (Nor Afifah et al., 2010) was further evaluated by means of the microscopy view and its growth curves. The morphological changes of the K. pneumoniae ATCC 13883 cells were observed under the scanning electron microscope (SEM) and transmission electron microscope (TEM) after they were treated at minimum inhibitory concentration (MIC; 0.50 mg/ml) (Nor Afifah et al., 2010) for 12, 24, and 36 h. The results showed the severity of the morphological deteriorations experienced by the treated cells. The killing curve assay was performed for 48 h at three different extract concentrations (1/2 MIC, MIC, and 2 MIC). An increase in the extract concentration of up to 2 MIC value did significantly reduce the number of cells by approximately 1.9 $log_{10}$, as compared with the control. Identification of the potential compounds of the extract responsible for the antibacterial activity was carried out through the gas chromatography-mass spectrum (GC-MS) analysis of the active subfraction, and the compound E-15-heptadecenal was identified and suggested as the most potential antibacterial compound of this extract. The subsequent cellular degenerations showed by the data might well explain the inhibitory mechanisms of the suggested antibacterial compound. All of these inhibitory effects have further proven the presence of an antibacterial compound within H. discoidea that can inhibit the growth of K. pneumoniae ATCC 13883.
Keywords
Klebsiella pneumoniae ATCC 13883; green macroalgae; transmission electron microscope; Halimeda discoidea; gas chromatography-mass spectrum;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Derakhshan, S., M. Sattari, and M. Bigdeli. 2008. Effects of subinhibitory concentrations of cumin (Cuminum cyminum L.) seed essential oil and alcoholic extract on the morphology, capsule expression and urease activity of Klebsiella pneumoniae. Int. J. Antimicrob. Agents 32: 432-436.   DOI   ScienceOn
2 Dykstra, M. J. 1992. Biological Electron Microscopy, Theory, Techniques and Troubleshooting. Plenum Press, New York.
3 Feng, S., W. Zeng, F. Luo, J. Zhao, Z. Yang, and Q. Sun. 2010. Antibacterial activity of organic acids in aqueous extracts from pine needles (Pinus massoniana Lamb.). Food Sci. Biotechnol. 19: 35-41.   DOI   ScienceOn
4 Fenical, W. and V. J. Paul. 1984. Antimicrobial and cytotoxic terpenoids from tropical green algae of the family Udoteaceae. Hydrobiologia 116: 135-170.
5 Fujimura, T. and T. Kajiwara. 1990. Production of bioflavor by regeneration from protoplasts of Ulva pertusa (Ulvales, Chlorophyta). Hydrobiologia 204-205: 143-149.   DOI
6 Fusetani, N. 2000. Drugs From The Sea. Karger, Switzerland.
7 Ganti, V. S., K. H. Kim, H. D. Bhattarai, and H. W. Shin. 2006. Isolation and characterisation of some antifouling agents from the brown alga Sargassum confusum. J. Asian Nat. Prod. Res. 8: 309-315.   DOI   ScienceOn
8 Gao, F. H., T. Abee, and W. N. Konings. 1991. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Appl. Environ. Microbiol. 57: 2164-2170.
9 Glauert, A. M. 1980. Fixation, dehydration and embedding of biological specimens. In A. M. Glauert (ed.). Practical Methods in Electron Microscopy. North-Holland, Amsterdam.
10 Goñi, I., L. Valdivieso, and A. Garcia-Alonso. 2000. Nori seaweed consumption modifies glycemic response in healthy volunteers. Nutr. Res. 20: 1367-1375.   DOI   ScienceOn
11 Helander, I. M., E. L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades, and S. Roller. 2001. Chitosan disrupts the barrier properties of the outer membrane of Gram negative bacteria. Int. J. Food Microbiol. 71: 235-244.   DOI   ScienceOn
12 Hellio, C., D. De La Broise, L. Dufossé, Y. Le Gal, and N. Bourgougnon. 2001. Inhibition of marine bacteria by extracts of macroalgae: Potential use for environmentally friendly antifouling paints. Mar. Environ. Res. 52: 231-247.   DOI   ScienceOn
13 Ismail, A. 1995. Chlorophyta, pp. 171-247. In A. Ismail (ed.). Rumpai Laut Malaysia. Dewan Bahasa dan Pustaka, Kuala Lumpur.
14 Kajiwara, T., K. Matsui, and Y. Akakabe. 1996. Biogeneration of volatile compounds via oxylipins in edible seaweeds, pp. 146-166. In G. R. Takeoka, R. Teranishi, P. J. Williams, and A. Kobayashi (eds.). Biotechnology for Improved Foods and Flavours. American Chemical Society, Washington DC.
15 Kajiwara, T., K. Matsui, A. Yoshihiko, M. Takushi, and C. Arai. 2006. Antimicrobial browning-inhibitory effect of flavor compounds in seaweeds. J. Appl. Phycol. 18: 413-422.   DOI   ScienceOn
16 Kasi, P. D., S. Natarajan, K. Periyanaina, and K. P. Shanmugaiahthevar. 2008. Bioprotective properties of seaweeds: In vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC. Complement Altern. Med. DOI: 10.1186/1472-6882-8-38.
17 Lane, A. L., L. Mular, E. J. Drenkard, T. L. Shearer, S. Engel, S. Fredericq, et al. 2010. Ecological leads for natural product discovery: Novel sesquiterpene hydroquinones from the red macroalga Peyssonnelia sp. Tetrahedron 66: 455-461.   DOI   ScienceOn
18 Linares, L., C. Cervera, I. Hoyo, G. Sanclemente, F. Marco, F. Cofan, et al. 2010. Klebsiella pneumoniae infection in solid organ transplant recipients: Epidemiology and antibiotic resistance. Transplant. Proc. 42: 2941-2943.   DOI   ScienceOn
19 Lee, C.-H., H.-S. Leu, T.-S. Wu, L.-H. Su, and J. W. Liu. 2005. Risk factors for spontaneous rupture of liver abscess caused by Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis. 52: 79-84.   DOI   ScienceOn
20 Lima-Filho, J. V. M., A. F. F. U. Carvalho, S. M. Freitas, and V. M. M. Melo. 2002. Antibacterial activity of extracts of six macroalgae from the northeastern Brazilian coast. Braz. J. Microbiol. 33: 311-314.
21 Lu, C. H., W. N. Chang, Y. C. Chuang, and H. W. Chang. 1998. The prognostic factors of adult Gram-negative bacillary meningitis. J. Hosp. Infect. 40: 27-34.
22 Maltezou, H. C., P. Giakkoupi, A. Maragos, M. Bolikas, V. Raftopoulos, H. Papahatzak, et al. 2009. Outbreak of infections due to KPC 2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J. Infect. 58: 213-219.   DOI   ScienceOn
23 Manzo, E., M. L. Ciavatta, S. Bakkas, G. Villani, M. Varcamonti, A. Zanfardino, and M. Gavagnin. 2009. Diterpene content of the alga Dictyota ciliolata from a Moroccan lagoon. Phytochem. Lett. 2: 211-215.   DOI   ScienceOn
24 McDowell, E. M. and B. F. Trump. 1976. Histologic fixatives suitable for diagnostic light and electron microscopy. Arch. Pathol. Lab. Med. 100: 405-414.
25 Morris, G. L. and J. L. Yates. 1956. Respiratory infections due to Klebsiella pneumoniae. Dis. Chest. 30: 298-305.   DOI
26 Namikoshi, M., T. Fujiwara, T. Nishikawa, and K. Ukai. 2006. Natural abundance $^{14}C$ content of dibuthyl phthlate (DBP) from three marine algae. Mar. Drugs 4: 290-297.   DOI
27 Palic, R., G. Stojanovic, S. Alagic, M. Nikolic, and Z. Lepojevic. 2002. Chemical composition and antimicrobial activity of the essential oil and $CO_2$ extracts of the oriental tobacco, Prilep. Flavour Fragr. J. 17: 323-326.   DOI   ScienceOn
28 National Committee for Clinical Laboratory Standards. 1999. Methods for determining bactericidal activity of antimicrobial agent; Approved guideline. NCCLS Document M62A C.F.R. Wayne PA.
29 Nation, J. L. 1983. A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol. 58: 347-351.
30 Nor Afifah, S., I. Darah, S. Shaida Fariza, M. K. Mohd Jain Noordin, and Z. Nurul Aili. 2010. Antimicrobial activity of various extracts of a tropical Chlorophyta macroalgae, Halimeda discoidea. J. Appl. Sci. 10: 3007-3013.   DOI
31 Pastagia, M. and V. Arumugam. 2008. Klebsiella pneumoniae liver abscesses in a public hospital in Queens, New York. Travel Med. Infect. Dis. 6: 228-233.   DOI   ScienceOn
32 Paul, V. J. and K. L. Van Alstyne. 1988. Chemical defense and chemical variation in some tropical Pacific species of Halimeda (Halimedaceae; Chlorophyta). Coral Reef 6: 263-269.   DOI   ScienceOn
33 Phang, S. M. 2006. Seaweed resources in Malaysia: Current status and future prospects. Aquat. Ecosyst. Health Manag. 9: 185-202.   DOI   ScienceOn
34 Pomponi, S. A. 2001. The oceans and human health: The discovery and development of marine-derived drugs. Oceanography 14: 78-87.
35 Prost, I., S. Dhondt, G. Rothe, J. Vicente, M. J. Rodriguez, N. Kift, et al. 2005. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 139: 1902-1913.   DOI   ScienceOn
36 Robertson, J. C. 1973. The significance of Klebsiella in the respiratory tract of hospital patients. Br. J. Dis. Chest 67: 227-237.   DOI
37 Puglisi, M. P., S. Engel, P. R. Jensen, and W. Fenical. 2007. Antimicrobial activities of extracts from Indo-Pacific marine plants against marine pathogens and saprophytes. Mar. Biol. 150: 531-540.
38 Rajeshwari, H., S. Nagveni, A. Oli, D. Parashar, and K. R. Chandrakanth. 2009. Morphological changes of Klebsiella pneumoniae in response to cefotaxime: A scanning electron microscope study. World J. Microbiol. Biotechnol. 25: 2263-2266.   DOI   ScienceOn
39 Riendeau, D. and E. Meighen. 1985. Enzymatic reduction of fatty acids and acyl CoAs to long chain aldehydes and alcohols. Cell. Mol. Life Sci. 41: 707-713.   DOI   ScienceOn
40 Sastry, V. M. V. S. and G. R. K. Rao. 1995. Dioctyl phthalate, and antibacterial compound from the marine brown alga Sargassum wightii. J. Appl. Phycol. 7: 185-186.   DOI   ScienceOn
41 Satta, G., P. Canepari, G. Botta, and R. Fontana. 1980. Control of cell septation by lateral wall extension in pH-conditional morphology mutant of Klebsiella pneumoniae. J. Bacteriol. 142: 43-51.
42 Satta, G., G. Cornaglia, A. Mazzariol, G. Golini, S. Valisena, and R. Fontana. 1995. Target for bacteriostatic and bactericidal activities of ${\beta}$-lactam antibiotics against Escherichia coli resides in different penicillin-binding proteins. Antimicrob. Agents Chemother. 39: 812-818.   DOI   ScienceOn
43 Scheuer, P. J. 1973. Chemistry of Marine Natural Products. Academic Press Inc., New York.
44 Shan, B.-E., Y. Yoshida, E. Kuroda, and U. Yamashita. 1999. Brief communication immunomodulating activity of seaweed extract on human lymphocytes in vitro. Int. J. Immunopharmacol. 21: 59-70.   DOI   ScienceOn
45 Babu, B. and J.-T. Wu. 2010. Production of phthlate esters by nuisance freshwater algae and cyanobacteria. Sci. Total Environ. 408: 4969-4975.   DOI   ScienceOn
46 Spratt, B. G. 1975. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 72: 2999-3003.   DOI   ScienceOn
47 Srinivasan, G. V., P. Sharanappa, N. K. Leela, C. T. Sadashiva, and K. K. Vijayan. 2009. Chemical composition and antimicrobial activity of the essential oil of Leea indica (Burm. f.) Merr. flowers. Nat. Prod. Rad. 8: 488-493.
48 Yoshie, Y., W. Wang, Y.-P. Hsieh, and T. Suzuki. 2002. Compositional difference of phenolic compounds between two seaweeds, Halimeda spp. J. Tokyo Univ. Fish. 88: 21-24.
49 Amako, K., Y. Meno, and A. Takade. 1988. Fine structures of the capsules of Klebsiella pneumoniae and Escherechia coli K1. J. Bacteriol. 170: 4960-4962.
50 Anderson, R., J. Brodie, E. Onsøyen, A. T. Critchley, K. Boonprab, K. Matsui, et al. 2007. Formation of aldehyde flavor (n-hexanal, 3-nonenal and 2-nonenal) in the brown alga, Laminaria angustata, pp. 183-186. In R. Anderson, J. Brodie, E. Onsoyen, and A. T. Critchley (eds.). Eighteenth International Seaweed Symposium. Springer, Netherlands, Norway.
51 Branger, C., B. Bruneau, A. L. Lesimple, P. J. M. Bouvet, P. Berry, J. Sevali-Garci, and N. Lambert-Zechovsky. 1997. Epidemiological typing of extended-spectrum [beta]-lactamase-producing Klebsiella pneumoniae isolates responsible for five outbreaks in a university hospital. J. Hosp. Infect. 36: 23-36.   DOI   ScienceOn
52 Chakraborty, K., A. P. Lipton, R. Paul Raj, and K. K. Vijayan. 2010. Antibacterial labdane diterpenoids of Ulva fasciata Delile from southwestern coast of the Indian Peninsula. Food Chem. 119: 1399-1408.   DOI   ScienceOn
53 Chang, W.-N., C.-H. Lu, C.-R. Huang, Y.-C. Chuang, N.-W. Tsai, C.-C. Chang, et al. 2010. Clinical characteristics of postneurosurgical Klebsiella pneumoniae meningitis in adults and a clinical comparison to the spontaneous form in a Taiwanese population. J. Clin. Neurosci. 17: 334-338.   DOI   ScienceOn
54 Chan, S. C., W. L. Yau, W. Wang, D. K. Smith, F.-S. Sheu, and H. M. Chen. 1998. Microscopic observations of the different morphological changes caused by anti-bacterial peptides on Klebsiella pneumoniae and HL-60 leukemia cells. J. Pept. Sci. 4: 413-425.   DOI   ScienceOn
55 Cloete, T. E. 2003. Resistance mechanisms of bacteria to antimicrobial compounds. Int. Biodeterior. Biodegrad. 51: 277-282.   DOI   ScienceOn