• Title/Summary/Keyword: Mineralogical analysis

Search Result 402, Processing Time 0.031 seconds

Particle Size Analysis of Nano-sized Talc Prepared by Mechanical Milling Using High-energy Ball Mill (고에너지 볼 밀을 이용한 나노 활석의 형성 및 입도 분석)

  • Kim, Jin Woo;Lee, Bum Han;Kim, Jin Cheul;Kim, Hyun Na
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.47-55
    • /
    • 2018
  • Talc, hydrous magnesium phyllosilicate, is one of the most popular industrial minerals due to their chemical stability and adsorptivity. While micro-sized talc has long been used as a filler and coating, nano-sized talc recently is attracting attention as additives for improving the stability of nanocomposites. In this study, we produced the nano-sized talc powder by mechanical method using high energy ball mill and investigated the changes in particle size and crystallinity with increasing milling time up to 720 minutes. X-ray diffraction results show that the peak width of talc gradually as the milling proceeded, and after 720 minutes of pulverization, the talc showed an amorphous-like X-ray diffraction pattern. Lase diffraction particle size analysis presents that particle size of talc which was ${\sim}12{\mu}m$ decreased to ${\sim}0.45{\mu}m$ as the milling progressed, but no significant reduction of particle size was observed even after grinding for 120 minutes or more. BET specific surface area, however, steadily increases up to the milling time of 720 minutes, indicating that the particle size and morphology change steadily as the milling progressed. Scanning electron microscope and transmission electron microscope images shows that layered particles of about 100 to 300 nm was aggregated as micro-sized particles after pulverization for 720 minutes. As the grinding time increases, the particle size and morphology of talc continuously change, but the nano-sized talc particles form micro sized agglomerates. These results suggest that there is a critical size along the a, b axes in which the size of plates is reduced even though the grinding proceeds, and the reduction of plate thickness along the c axis leads the increase in specific surface area with further grinding. This study could enhance the understanding of the mechanism of the formation of nano-sized talc by mechanical grinding.

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.

Provenance of the ARA07C-St02B Core Sediment from the East Siberian Margin (동시베리아해 연변부 ARA07C-St02B 코어 퇴적물의 기원지 연구)

  • Koo, Hyo Jin;Lim, Gi Taek;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.13-24
    • /
    • 2022
  • The Arctic Ocean is very sensitive to global warming and Arctic Ocean sediments provide a records of terrestrial climate change, analyzing their composition helps clarify global warming. The gravity core sediment ARA07C-St02B was collected at the East Siberian margin during an Arctic expedition in 2016 on the Korean ice-breaking vessel ARAON, and its provenance was estimated through sedimentological, mineralogical and geochemical analysis. The core sediment was divided into four units based on sediment color, sand content and ice-rafted debris content. Units 1 and 3 had higher sand and ice-rafted debris contents than units 2 and 4, and contained a brown layer, whereas units 2 and 4 were mainly composed of a gray layer. Correlation analysis using the adjacent core sediment ARA03B-27 suggested that the sediment units were deposited during marine isotope stage 1 to 4. The bulk mineral, clay mineral, and geochemical compositions of units including a brown layer differed from units including a gray layer. Bulk and clay mineral compositions indicated that coarse and fine sediments had a different origin. Coarse sediments might have been deposited mostly by the East Siberian Coastal Current from the Laptev Sea and the East Siberian Sea or by the Beaufort Gyre from the Chukchi Sea, whereas fine sediments might have been transpoted mostly by currents from the East Siberian Sea, the Chukchi Sea and the Beaufort Sea. Some of the coarse sediments in unit 1 and fine sediments in unit 3 might have been deposited by iceberg ice, sea ice or current from the Beaufort Sea and the Canada Archipelago. Investigating the geochemical composition of the potential origins will elucidate the origin and transportation of the study area's core sediments.

K-Ar Age-dating Results of Some Major Faults in the Gyeongsang Basin: Spatio-temporal Variability of Fault Activations during the Cenozoic Era (경상분지 내 주요단층의 K-Ar 연대: 신생대 단층활동의 시·공간적 특성)

  • Song, Yungoo;Sim, Ho;Hong, Seongsik;Son, Moon
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.449-457
    • /
    • 2019
  • We present the K-Ar age-dating results of the bulk and the less than $0.1{\mu}m$ fraction of the fault gouges collected from some major faults in the Gyeongsang basin. We try to determine the timings of fault activation based on the mineralogical characteristics, and to interpret the spatio-temporal variability of the major fault events during the Cenozoic Era by considering together with the previous results. We propose at least the 3-times of major fault events at about 50 Ma, and just after 30 Ma and 20 Ma in the Gyeongsang basin, which were inferred from the combined approach of the K-Ar ages and the clay mineralogy of the bulk fault gouges and the <$0.1{\mu}m$ fractions. The fault activation timings of the Yangsan fault tend to be younger in the northern part than in the southern part. In particular, the inferred fault events just after 30 Ma and 20 Ma are mainly detected in the Ocheon fault and the related faults, and the fault in the Gyeongju area. The fault activation timings of the major faults can be revised accurately by using illite-age-analysis(IAA) method. These geochronological determinations of the multiple events of the major faults in the Gyeongsang basin are crucial to establish the tectonic evolution in the southeastern part of the Korean Peninsula during the Cenozoic Era.

Surface Milling for the Study of Pore Structure in Shale Reservoirs (셰일 저류층 내 공극 구조 연구를 위한 표면 밀링)

  • Park, Sun Young;Choi, Jiyoung;Lee, Hyun Suk
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2020
  • Understanding the pore structure including pore shape and connectivity in unconventional reservoirs is essential to increase the recovery rate of unconventional energy resources such as shale gas and oil. In this study, we found analysis condition to probe the nanoscale pore structure in shale reservoirs using Focused Ion Beam (FIB) and Ion Milling System (IMS). A-068 core samples from Liard Basin are used to probe the pore structure in shale reservoirs. The pore structure is analyzed with different pretreatment methods and analysis condition because each sample has different characteristics. The results show that surface milling by FIB is effective to obtain pore images of several micrometers local area while milling a large-area by IMS is efficient to observe various pore structure in a short time. Especially, it was confirmed that the pore structure of rocks with high content of carbonate minerals and high strength can be observed with milling by IMS. In this study, the analysis condition and process for observing the pore structure in the shale reservoirs is established. Further studies are needed to perform for probing the effect of pore size and shape on the enhancement of shale gas recovery.

Correction for Na Migration Effects in Silicate Glasses During Electron Microprobe Analysis (전자현미분석에서 발생하는 규산염 유리 시료의 Na 이동 효과 보정)

  • Hwayoung, Kim;Changkun, Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.457-467
    • /
    • 2022
  • Electron bombardment to silicate glass during electron probe microanalysis (EPMA) causes outward migration of Na from the excitation volume and subsequent decrease in the measured X-ray count rates of Na. To acquire precise Na2O content of silicate glass, one should use proper analytical technique to avoid or minimize Na migration effect or should correct for decreases in the measured Na X-ray counts. In this study, we analyzed 8 silicate glass standard samples using automated Time Dependent Intensity (TDI) correction method of Probe for EPMA software that can calculate zero-time intercept by extrapolating X-ray count changes over analysis time. We evaluated an accuracy of TDI correction for Na measurements of silicate glasses with EPMA at 15 kV acceleration voltage and 20 nA probe current electron beam, which is commonly utilized analytical condition for geological samples. Results show that Na loss can be avoided with 20 ㎛-sized large beam (<0.1 nA/㎛2), thus silicate glasses can be analyzed without TDI correction. When the beam size is smaller than 10 ㎛, Na loss results in large relative errors up to -55% of Na2O values without correction. By applying TDI corrections, we can acquire Na2O values close to the reference values with relative errors of ~ ±10%. Use of weighted linear-fit can reduce relative errors down to ±6%. Thus, quantitative analysis of silicate glasses with EPMA is required for TDI correction for alkali elements such as Na and K.

The Effect of Chloride Additives and pH on Direct Aqueous Carbonation of Cement Paste (시멘트 풀의 직접수성탄산화에서 Chloride 첨가제와 pH의 영향)

  • Lee, Jinhyun;Hwang, Jinyeon;Lee, Hyomin;Son, Byeongseo;Oh, Jiho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2015
  • Recently, carbon capture and storage (CCS) techniques have been globally studied. This study was conducted to use waste cement powder as an efficient raw material of mineral carbonation for $CO_2$ sequestration. Direct aqueous carbonation experiment was conducted with injecting pure $CO_2$ gas (99.9%) to a reactor containing $200m{\ell}$ reacting solution and the pulverized cement paste (W:C = 6:4) having particle size less than 0.15 mm. The effects of two additives (NaCl, $MgCl_2$) in carbonation were analyzed. The characteristics of carbonate minerals and carbonation process according to the type of additives and pH change were carefully evaluated. pH of reacting solution was gradually decreased with injecting $CO_2$ gas. $Ca^{2+}$ ion concentration in $MgCl_2$ containing solution was continuously decreased. In none $MgCl_2$ solution, however, $Ca^{2+}$ ion concentration was increased again as pH decreased. This is probably due to the dissolution of newly formed carbonate mineral in low pH solution. XRD analysis indicates that calcite is dominant carbonate mineral in none $MgCl_2$ solution whereas aragonite is dominant in $MgCl_2$ containing solution. Unstable vaterite formed in early stage of experiment was transformed to well crystallized calcite with decreasing pH in the absence of $MgCl_2$ additives. In the presence of $MgCl_2$ additives, the content of aragonite was increased with decreasing pH whereas the content of calite was decreased.

Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2 Storage Condition (지중저장 조건에서 초임계CO2에 의한 포항분지 사암과 이암의 지화학적 풍화반응 연구)

  • Park, Jinyoung;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.221-234
    • /
    • 2013
  • Laboratory experiments for the reaction with supercritical $CO_2$ under the $CO_2$ sequestration condition were performed to investigate the mineralogical and geochemical weathering process of the sandstones and mudstones in the Pohang basin. To simulate the supercritical $CO_2$-rock-groundwater reaction, rock samples used in the experiment were pulverized and the high pressurized cell (200 ml of capacity) was filled with 100 ml of groundwater and 30 g of powdered rock samples. The void space of the high pressurized cell was saturated with the supercritical $CO_2$ and maintained at 100 bar and $50^{\circ}C$ for 60 days. The changes of mineralogical and geochemical properties of rocks were measured by using XRD (X-Ray Diffractometer) and BET (Brunauer-Emmett-Teller). Concentrations of dissolved cations in groundwater were also measured for 60 days of the supercritical $CO_2$-rock-groundwater reaction. Results of XRD analyses indicated that the proportion of plagioclase and K-feldspar in the sandstone decreased and the proportion of illite, pyrite and smectite increased during the reaction. In the case of mudstone, the proportion of illite and kaolinite and cabonate-fluorapatite increased during the reaction. Concentration of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased during the reaction, suggesting that calcite and feldspars of the sandstone and mudstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites in Pohang basin. The average specific surface area of sandstone and mudstone using BET analysis increased from $27.3m^2/g$ and $19.6m^2/g$ to $28.6m^2/g$ and $26.6m^2/g$, respectively, and the average size of micro scale void spaces for the sandstone and mudstone decreased over 60 days reaction, resulting in the increase of micro pore spaces of rocks by the dissolution. Results suggested that the injection of supercritical $CO_2$ in Pohang basin would affect the physical property change of rocks and also $CO_2$ storage capacity in Pohang basin.

Physicochemical Properties of the Synthetic Hectorite (합성 헥토라이트의 물리화학적 특성)

  • Chae, Soo-Chun;Jang, Young-Nam;Bae, In-Kook;Jang, Hee-Dong;Ryou, Kyung-Won;Chae, Young-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.313-320
    • /
    • 2008
  • Hectorite was synthesized under hydrothermal conditions and its physicochemical properties have been investigated in terms of temperature, pH, and organic agent to observe the change of doll basal spacing. The IR, CEC, MB, swelling volume and specific surface area of the hectorite were measured for the characterization. The solid/liquid ratio of hectorite to distilled water before mixing with other materials was also determined for its use as a multi-functional material. The $d_{001}$ basal spacing decreased from $12.63\;\AA$ at room temperature to $10.19\;\AA$ at $650^{\circ}C$ in the heating tests. As the pH of hectorite slurry increased. the $d_{001}$ basal spacing decreased. reaching the lowest value of $13.33\;\AA$ at pH 7 and afterward, increased. All the fool basal spacings of the hectorite increased when it was intercalated with the following solvents: $12.86\;\AA$ in diethyl ether, $13.31\;\AA$ in acetonitrile. $13.59\;\AA$ in methanol, $14.05\;\AA$ in ethanol, $15.69\;\AA$ in acetone, and $17.42\;\AA$ in ethylene glycol. Our IR analysis results were in good agreement with those of other researchers. The CEC, MB, swelling volume and specific surface area of hectorite were determined to be 105 cmol/kg, 80 cmol/kg, $68\sim74ml/2g$ and $213m^{2}/g$, respectively. Also, the hectorite to distilled water ratio of 2 to 100 was found to be most favorable for mixing with other materials such as the solvents mentioned above.

Generation of the Staurolite Based on a Relation Between Illite-Muscovite Transition: A Study on the Shale of the Baekunsa Formation, Buyeo (일라이트-백운모 전이과정과 십자석 생성과의 관계: 부여지역 백운사층 셰일에 대한 연구)

  • Choi, Seung Hyun;Mun, Hyang Ran;Lee, Young Boo;Lee, Jung Hoo;Yu, Jangho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2013
  • The generation of staurolite from the mixed-phase muscovite and the metamorphic environment of shales in the Baekunsa formation, Hongsan, Buyeo, were studied using electron probe micro analysis (EPMA). The average chemical composition of mica-type mineral is $(K_{1.11}Na_{0.26}Ca_{0.04})(Al_{3.93}Fe_{0.21}Mg_{0.07})(Si_{6.08}Al_{1.92})O_{20}(OH)_4$, and shows a characteristics of the so-called illite with a low content of interlayer cations and Fe, Mg in octahedral sites. The mica-type mineral shows a typical chemical composition of the mixed-phase among muscovite, pyrophyllite, and chlorite (mixed-phase muscovite, $Mu_{70.5}Py_{23.5}Ch_{6.0}$). The staurolite, in general, occurs with the mixed-phase muscovites, pyrophyllites, and aluminosilicates in the rock. We consider that staurolite can be formed by a reaction involving pyrophyllite such as pyrophyllite+chloritoid. The chloritoid is formed by a reaction between pyrophyllite and chlorite and is supposed to be used up in the process of staurolite formation. As a result, the mixed-phase muscovite, formed during the transition of illite to muscovite, plays an important role for the generation of the staurolite. Considering that the reaction occurs at the temperature higher than $300^{\circ}C$ and pyrophyllites transform into aluminosilicates at $350^{\circ}C$, the shale in the Baekunsa formation can be considered to have been experienced a metamorphic temperature between $300{\sim}350^{\circ}C$.