Browse > Article
http://dx.doi.org/10.22807/KJMP.2022.35.4.457

Correction for Na Migration Effects in Silicate Glasses During Electron Microprobe Analysis  

Hwayoung, Kim (Division of Earth Sciences, Korea Polar Research Institute)
Changkun, Park (Division of Earth Sciences, Korea Polar Research Institute)
Publication Information
Korean Journal of Mineralogy and Petrology / v.35, no.4, 2022 , pp. 457-467 More about this Journal
Abstract
Electron bombardment to silicate glass during electron probe microanalysis (EPMA) causes outward migration of Na from the excitation volume and subsequent decrease in the measured X-ray count rates of Na. To acquire precise Na2O content of silicate glass, one should use proper analytical technique to avoid or minimize Na migration effect or should correct for decreases in the measured Na X-ray counts. In this study, we analyzed 8 silicate glass standard samples using automated Time Dependent Intensity (TDI) correction method of Probe for EPMA software that can calculate zero-time intercept by extrapolating X-ray count changes over analysis time. We evaluated an accuracy of TDI correction for Na measurements of silicate glasses with EPMA at 15 kV acceleration voltage and 20 nA probe current electron beam, which is commonly utilized analytical condition for geological samples. Results show that Na loss can be avoided with 20 ㎛-sized large beam (<0.1 nA/㎛2), thus silicate glasses can be analyzed without TDI correction. When the beam size is smaller than 10 ㎛, Na loss results in large relative errors up to -55% of Na2O values without correction. By applying TDI corrections, we can acquire Na2O values close to the reference values with relative errors of ~ ±10%. Use of weighted linear-fit can reduce relative errors down to ±6%. Thus, quantitative analysis of silicate glasses with EPMA is required for TDI correction for alkali elements such as Na and K.
Keywords
EPMA; Electron microprobe; Silicate glass; Na migration; TDI correction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Autefage, F. and Couderc, J.J., 1980, Etude du mecanisme de la migration du sodium et du potassium au cours de leur analyse a la microsonde electronique. Bulletin de mineralogie, 103(6), 623-629.   DOI
2 Borom, M.P. and Hanneman, R.E., 1967, Local compositional changes in alkali silicate glasses during electron microprobe analysis. Journal of Applied Physics, 38(5), 2406-2407.   DOI
3 Chantler, C.T., Olsen, K., Dragoset, R.A., Kishore, A.R., Kotochigova, S.A., and Zucker, D.S., 2005, X-ray Form Factor, Attenuation, and Scattering Tables (ver. 2.1). National Institute of Standards and Technology, Gaithersburg, Maryland.
4 Goldoff, B., Webster, J.D., and Harlov, D.E., 2012, Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. American Mineralogist, 97(7), 1103-1115.   DOI
5 Goodhew, P.J. and Gulley, J.E.C., 1974, The determination of alkali metals in glass by electron microprobe analysis. Glass Technology, 15, 123-126.
6 Humphreys, M.C., Kearns, S.L., and Blundy, J.D., 2006, SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis. American Mineralogist, 91(4), 667-679.   DOI
7 Jarosewich, E., Nelen, J.A., and Norberg, J.A., 1980, Reference samples for electron microprobe analysis. Geostandards Newsletter, 4(1), 43-47.   DOI
8 Kelly, P.J., Kyle, P.R., Dunbar, N.W., and Sims, K.W., 2008, Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972-2004 and comparison with older lavas. Journal of Volcanology and Geothermal Research, 177(3), 589-605.   DOI
9 Lineweaver, J.L., 1963, Oxygen outgassing caused by electron bombardment of glass. Journal of Applied Physics, 34(6), 1786-1791.   DOI
10 Morgan, G.B. and London, D., 1996, Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. American Mineralogist, 81(9-10), 1176-1185.   DOI
11 Morgan, G.B. and London, D., 2005, Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. American Mineralogist, 90(7), 1131-1138.   DOI
12 Stock, M.J., Humphreys, M.C., Smith, V.C., Johnson, R.D., Pyle, D.M., and EIMF., 2015, New constraints on electron-beam induced halogen migration in apatite. American Mineralogist, 100(1), 281-293.   DOI
13 Nielsen, C.H. and Sigurdsson, H., 1981, Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. American Mineralogist, 66(5-6), 547-552.
14 Saijo, Y., Suzuki, Y., Akiyama, R., and Miura, K., 2021, Determination of sulfur in soda-lime silicate glass by inductively coupled plasma atomic emission spectroscopy following separation using an alumina column. Journal of the Ceramic Society of Japan, 129(1), 54-59.
15 Spray, J.G. and Rae, D.A., 1995, Quantitative electron-microprobe analysis of alkali silicate glasses; a review and user guide. The Canadian Mineralogist, 33(2), 323-332.
16 Varshneya, A.K., Cooper, A.R., and Cable, M., 1966, Changes in Composition during Electron Micro-Probe Analysis of K2O-SrO-SiO2 Glass. Journal of Applied Physics, 37(5), 2199-2199.   DOI
17 Zhang, C., Koepke, J., Wang, L.X., Wolff, P.E., Wilke, S., Stechern, A., Almeev, R., and Holtz, F., 2016, A practical method for accurate measurement of trace level fluorine in Mg- and Fe-bearing minerals and glasses using electron probe microanalysis. Geostandards and Geoanalytical Research, 40(3), 351-363.   DOI
18 Vassamillet, L.F. and Caldwell, V.E., 1969, Electron-probe microanalysis of alkali metals in glasses. Journal of Applied Physics, 40(4), 1637-1643.   DOI
19 Vicenzi, E.P., Eggins, S., Logan, A., and Wysoczanski, R., 2002, Microbeam characterization of corning archeological reference glasses: new additions to the smithsonian microbeam standard collection. Journal of Research of the National Institute of Standards and technology, 107(6), 719-727.   DOI
20 Zhang, X., Yang, S., Zhao, H., Jiang, S., Zhang, R., and Xie, J., 2019, Effect of beam current and diameter on electron probe microanalysis of carbonate minerals. Journal of Earth Science, 30(4), 834-842.