DOI QR코드

DOI QR Code

Provenance of the ARA07C-St02B Core Sediment from the East Siberian Margin

동시베리아해 연변부 ARA07C-St02B 코어 퇴적물의 기원지 연구

  • Koo, Hyo Jin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lim, Gi Taek (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 구효진 (경상국립대학교 지질과학과 및 기초과학연구소) ;
  • 임기택 (경상국립대학교 지질과학과 및 기초과학연구소) ;
  • 조현구 (경상국립대학교 지질과학과 및 기초과학연구소)
  • Received : 2022.02.20
  • Accepted : 2022.03.08
  • Published : 2022.03.31

Abstract

The Arctic Ocean is very sensitive to global warming and Arctic Ocean sediments provide a records of terrestrial climate change, analyzing their composition helps clarify global warming. The gravity core sediment ARA07C-St02B was collected at the East Siberian margin during an Arctic expedition in 2016 on the Korean ice-breaking vessel ARAON, and its provenance was estimated through sedimentological, mineralogical and geochemical analysis. The core sediment was divided into four units based on sediment color, sand content and ice-rafted debris content. Units 1 and 3 had higher sand and ice-rafted debris contents than units 2 and 4, and contained a brown layer, whereas units 2 and 4 were mainly composed of a gray layer. Correlation analysis using the adjacent core sediment ARA03B-27 suggested that the sediment units were deposited during marine isotope stage 1 to 4. The bulk mineral, clay mineral, and geochemical compositions of units including a brown layer differed from units including a gray layer. Bulk and clay mineral compositions indicated that coarse and fine sediments had a different origin. Coarse sediments might have been deposited mostly by the East Siberian Coastal Current from the Laptev Sea and the East Siberian Sea or by the Beaufort Gyre from the Chukchi Sea, whereas fine sediments might have been transpoted mostly by currents from the East Siberian Sea, the Chukchi Sea and the Beaufort Sea. Some of the coarse sediments in unit 1 and fine sediments in unit 3 might have been deposited by iceberg ice, sea ice or current from the Beaufort Sea and the Canada Archipelago. Investigating the geochemical composition of the potential origins will elucidate the origin and transportation of the study area's core sediments.

기후 변화에 민감하게 반응하는 북극해는 지구 기후 변화의 흔적을 고스란히 간직하고 있으므로, 북극해 퇴적물 연구는 지구 기후 변화를 연구하는 데 매우 중요하다. 2016년에 수행된 아라온호의 ARA07C 북극해 탐사를 통하여 동시베리아해 연변부에서 획득한 ARA07C-St02B 중력 코어를 이용하여 퇴적학적, 광물학적, 지화학적 특성을 연구하고 이를 이용하여 기원지를 추정하였다. 코어 퇴적물은 색, 입도와 빙운쇄설물의 함량에 의하여 4개의 유닛으로 구분하였는데, 갈색층을 포함하는 유닛 1과 3은 회색층으로 구성된 유닛 2와 4보다 모래와 빙운쇄설물의 함량이 다소 높다. ARA07C-St02B 코어 주변에서 연구된 ARA03B-27 코어와 비교를 통하여 이들은 MIS (Marine Isotope Stage) 1부터 4시기에 퇴적된 것으로 여겨진다. 갈색층을 포함하는 유닛들과 회색층으로 이루어진 유닛 사이에는 벌크 광물 조성, 점토광물 조성, 지화학 조성에서 차이가 난다. 벌크 광물과 점토광물 특성은 조립질 퇴적물과 세립질 퇴적물 사이에 기원지가 다를 수 있음을 시사한다. 조립질 퇴적물은 대부분 랍테프해와 동시베리아해로부터 동시베리아 연안류나 추크치해로부터 보퍼트 환류를 따라 운반된 것으로 여겨지지만, 세립질 퇴적물은 대부분 동시베리아해, 추크치해, 보퍼트해로부터 해류에 의하여 운반된 것으로 추정된다. 유닛 1의 일부 조립질 퇴적물과 유닛 3의 세립질 퇴적물은 보퍼트해와 캐나다 북극 군도로부터 해류, 빙산 또는 해빙에 의하여 연구 지역에 퇴적된 것으로 판단된다. 잠재적인 근원지의 지화학 조성에 관한 자료를 획득하게 되면, 연구 지역의 코어 퇴적물의 기원지와 공급 방법에 대하여 좀 더 자세하게 규명될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 2021년도 경상국립대학교 연구년제 연구교수 연구지원비와 대한민국 해양수산부(MOF, the Ministry of Oceans and Fisheries, Korea)의 재원으로 한국극지연구소(KOPRI, Korea Polar Research Institute) 과제 1525011795(북극해 해저지질 조사 및 해저환경 변화 연구)에 의하여 수행되었다. 연구 수행과정에서 시료 준비와 실험에 도움을 준 경상국립대학교 지질과학과 점토실험실의 김정아, 류나형, 민수영, 박현제, 임효진, 장정규 학생에게 감사드리며, 부족한 원고를 세심하게 검토하고, 유익한 지적을 하여주신 익명의 심사자에게도 감사드립니다.

References

  1. Adler, R.E., Polyak, L., Ortiz, J.D., Kaufman, D.S., Channell, J.E., Xuan, C., Grottoli, A.G., Sellen, E. and Crawford, K.A., 2009, Sediment record from the western Arctic Ocean with an improved late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev ridge. Global and Planetary Change, 68, 18-29. https://doi.org/10.1016/j.gloplacha.2009.03.026
  2. Backman, J., Jakobsson, M., Lovlie, R., Polyak, L., and Febo, L.A., 2004, Is the central Arctic Ocean a sediment starved basin? Quaternary Science Review, 23, 1435-1454. https://doi.org/10.1016/j.quascirev.2003.12.005
  3. Biscaye, P.E., 1965, Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America, Bullentin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  4. Darby, D.A. and Bischof, J.F., 2004, A Holocene record of changing Arctic Ocean ice drift analogous to the effects of the Arctic Oscillation. Paleoceanography and Paleoclimatology, 19, 1-9.
  5. Darby, D.A., Bischof, J.F. and Jones, G.A., 1997, Radiocarbon chronology of depositional regimes in the western Arctic Ocean. Deep Sea Research Part II, 44, 1745-1757. https://doi.org/10.1016/S0967-0645(97)00039-8
  6. Darby, D.A., Myers, B.W., Jakobsson, M. and Rigor, I., 2011, Modern dirty sea ice characteristics and sources: The role of anchor ice. Journal of Geophysical Research, 116, 1-18.
  7. Darby, D.A., Ortiz, J.D., Grosch, C.E. and Lund, S.P., 2012, 1,500-year cycle in the Arctic oscillation identified in Holocene Arctic sea-ice drift. Nature Geoscience, 5, 897-900. https://doi.org/10.1038/ngeo1629
  8. Darby, D.A., Polyak, L. and Bauch, H., 2006, Past glacial and interglacial conditions in the Arctic Ocean and marginal seas-a review. Progress in Oceanography, 71, 129-144. https://doi.org/10.1016/j.pocean.2006.09.009
  9. Fagel, N., Not, C., Gueibe, J., Mattielli, N. and Bazhenova, E., 2014, Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge. Quaternary Science Reviews, 92, 140-154. https://doi.org/10.1016/j.quascirev.2013.12.011
  10. Jang, J.K., Koo, H.J. and Cho, H.G., 2021, Provenance of the sediments of the Araon Mound in the Chukchi Sea, Arctic Ocean. Korean Journal of Mineralogy and Petrology, 34, 15-29 (In Korean with English abstract). https://doi.org/10.22807/KJMP.2021.34.1.15
  11. Jin, Y.K. and Shipboard Scientific Party, 2017, ARA07C Cruise Report: 2016 East Siberian/Chukchi Sea Research Program. Korea Polar Research Institute. 214p.
  12. Kobayashi, D., Yamamoto, M., Irino, T., Nam, S.I., Park, Y.H., Harada, N., Nagashima, K., Chikata, K. and Saitoh, S.I., 2016, Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: Changes in the provenance of western Arctic Ocean sediments since the last glacial period. Polar Science, 10, 519-531. https://doi.org/10.1016/j.polar.2016.07.005
  13. Koo, H.J., Jin, Y.K. and Cho, H.G., 2021, Change in sediment provenance on the inner slope of the Chukchi Rise and their paleoenvironmental implications. Applied Sciences, 11, 6491: doi.org/10.3390/app11146491.
  14. Lowemark, L., Marz, C., O'Regan, M. and Gyllencreutz, R., 2014, Arctic ocean Mn-stratigraphy: genesis, synthesis and inter-basin correlation. Quaternary Science Review, 92, 97-111. https://doi.org/10.1016/j.quascirev.2013.11.018
  15. Marz, C., Stratmann, A., Matthiessen, J., Meinhardt, A.K., Eckert, S., Schnetger, B., Vogt, C., Stein, R. and Brumsack, H.J., 2011, Manganese rich brown layers in Arctic Ocean sediments: Composition, formation mechanisms, and diagenetic overprint. Geochimica et Cosmochimica Acta, 75, 7668-7687. https://doi.org/10.1016/j.gca.2011.09.046
  16. McKay, J.L., de Vernal, A., Hillaire-Marcel, C., Not, C., Polyak, L. and Darby, D., 2008, Holocene fluctuations in Arctic sea-ice cover: dinocyst-based reconstructions for the eastern Chukchi Sea. Canadian Journal of Earth Sciences, 45, 1377-1397. https://doi.org/10.1139/E08-046
  17. Myers, W.B., 2019, Circum-Arctic Mineralogy and Pan-Arctic Chronostratigraphy of Late Pleistocene Sediments: Developing a Comprehensive Age Model for the Western Arctic Ocean Using Unique Ice-Rafted Signals. Ph.D. dissertation, Old Dominion University, Norfolk, VA, USA, 154p.
  18. Naidu, A.S., and Mowatt, T.C., 1983, Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. Geological Society of America Bulletin, 94, 841-854. https://doi.org/10.1130/0016-7606(1983)94<841:SADPOC>2.0.CO;2
  19. Park, K., Ohkushi, K.I., Cho, H.G. and Khim, B.K., 2017, Litho-stratigraphy and paleoceanography in the Chukchi Rise of the western Arctic Ocean since the last glacial period. Polar Science, 11, 42-53. https://doi.org/10.1016/j.polar.2017.01.002
  20. Patchett, P.J., Embry, A.F., Ross, G.M., Beauchamp, B., Harrison, J.C., Mayr, U. and Spence, G.O., 2004, Sedimentary cover of the Canadian Shield through Mesozoic time reflected by Nd isotopic and geochemical results for the Sverdrup Basin, Arctic Canada. The Journal of Geology, 112, 39-57. https://doi.org/10.1086/379691
  21. Phillips, R.L. and Grantz, A., 2001, Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic. Marine Geology, 172, 91-115. https://doi.org/10.1016/S0025-3227(00)00101-8
  22. Polyak, L. and Jakobsson, M., 2011, Quaternary sedimentation in the Arctic Ocean: Recent advances and further challenges. Oceanography, 24, 52-64. https://doi.org/10.5670/oceanog.2011.55
  23. Polyak, L.V., Curry, W.B., Darby, D.A., Bischof, J. and Cronin, T.M., 2004, Contrasting glacial/interglacial regimes in the Western Arctic Ocean as exemplied by a sedimentary record from the Mendeleev Ridge. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 73-93. https://doi.org/10.1016/S0031-0182(03)00661-8
  24. Polyak, L., Bischof, J., Ortiz, J.D., Darby, D.A., Channell, J.E., Xuan, C. and Adler, R.E., 2009, Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Global and Planetary Change, 68, 5-17. https://doi.org/10.1016/j.gloplacha.2009.03.014
  25. Rachold, V., 1999, Major, trace, and rare earth element geochemistry of suspended particulate material of East Siberian rivers draining to the Arctic Ocean. In: Land-ocean systems in the Siberian Arctic: Dynamics and History (eds. Kassens, H., Bauch, H., Dmitrenko, H.A., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J. and Timokhov, L.A.) Heidelberg: Springer-Verlag, 199-222.
  26. Royer, T.C. and Emery, W.J., 1987, Circulation in the Gulf of Alaska, 1981. Deep Sea Research Part A. Oceanographic Research Papers, 34, 1361-1377. https://doi.org/10.1016/0198-0149(87)90132-4
  27. Schreck, M., Nam, S.-I., Polyak, L., Vogt, C., Kong, G.-S., Stein, R., Matthiessen, J. and Niessen, F., 2018, Improved Pleistocene sediment stratigraphy and paleoenvironmental implications for the western Arctic Ocean off the East Siberian and Chukchi margins. Arktos, 4, 21, doi:10.1007/s41063-018-0057-8.
  28. Stein, R., 2008, Arctic Ocean sediments: processes, proxies, and paleoenvironment. Development in Marine Geology, Elsevier, 608p.
  29. Stein, R., Matthiessen, J., Niessen, F., Krylov, A., Nam, S. I. and Bazhenova, E., 2010, Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 79, 97-121.
  30. Taylor, S.R. and McLennan, S.M., 1985, The continental crust: its composition and evolution. Blackwells, Oxford, 312p.
  31. Wagner, A., G. Lohmann, and Prange, M., 2011, Arctic river discharge trends since 7ka BP. Global and Planetary Change, 79, 48-60. https://doi.org/10.1016/j.gloplacha.2011.07.006
  32. Wahsner, M., Muller, C., Stein, R., Ivanov, G., Levitan, M., Shelekova, E., and Tarasov, G., 1999, Clay mineral distributions in surface sediments from the Central Arctic Ocean and the Eurasian continental margin as indicator for source areas and transport pathways: A synthesis. Boreas, 28, 215-233. https://doi.org/10.1080/030094899421272
  33. Weingartner, T., Aagaard, K., Woodgate, R., Danielson, S., Sasaki, Y. and Cavalieri, D., 2005, Circulation on the north central Chukchi Sea shelf. Deep Sea Research Part II: Topical Studies in Oceanography, 52, 3150-3174. https://doi.org/10.1016/j.dsr2.2005.10.015
  34. Ye, L., Marz. C., Polyak, L., Yu, X. and Zhang, W., 2019, Dynamics of manganese and cerium enrichment in Arctic Ocean sediments: A case study from the Alpha Ridge. Frontiers in Earth Science, 6, 1-18, doi:10.3389/feart.2018.00236.
  35. Zou, H., 2016, An X-ray diffraction approach: bulk mineral assemblages as provenance indicator of sediments from the Arctic Ocean. PhD Thesis, University of Bremen, Bremen, 104p.