DOI QR코드

DOI QR Code

일라이트-백운모 전이과정과 십자석 생성과의 관계: 부여지역 백운사층 셰일에 대한 연구

Generation of the Staurolite Based on a Relation Between Illite-Muscovite Transition: A Study on the Shale of the Baekunsa Formation, Buyeo

  • 최승현 (전북대학교 지구환경과학과) ;
  • 문향란 (전북대학교 지구환경과학과) ;
  • 이영부 (한국기초과학지원연구원 전주센터) ;
  • 이정후 (전북대학교 지구환경과학과) ;
  • 유장호 (한국광물자원공사 전략금속탐사팀)
  • Choi, Seung Hyun (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Mun, Hyang Ran (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Lee, Young Boo (Korea Basic Science Institute, Jeonju Center) ;
  • Lee, Jung Hoo (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Yu, Jangho (Korea Resources Corporation, Resources Business Division)
  • 투고 : 2013.02.20
  • 심사 : 2013.03.25
  • 발행 : 2013.03.31

초록

충남 부여군 홍산면 일대의 백운사층 셰일에서 산출되는 운모류 광물(혼합상 백운모)과 십자석에 대한 EPMA 연구를 수행하여, 혼합상 백운모와 십자석 생성 과정과의 관계 및 백운사층 셰일의 변성환경을 규명하고자 하였다. 암석에서 산출되는 운모류 광물의 평균 화학조성은 $(K_{1.11}Na_{0.26}Ca_{0.04})(Al_{3.93}Fe_{0.21}Mg_{0.07})(Si_{6.08}Al_{1.92})O_{20}(OH)_4$로 층간 양이온 함량이 낮으며(1.41) 팔면체 자리에 Fe, Mg를 함유한 일라이트, 즉 백운모/파이로필라이트/녹니석 혼합상($Mu_{70.5}Py_{23.5}Ch_{6.0}$)의 화학조성을 보인다. 한편 십자석은 암석 내에서 혼합상 백운모, 단일 결정의 파이로필라이트 및 알루미늄 규산염 광물과 함께 산출되는데, 이들 중 파이로필라이트가 십자석 생성에 참여한 것으로 판단된다. 혼합상 백운모에서 분리된 파이로필라이트와 녹니석이 반응하여 클로리토이드를 형성한 이후, 변성도가 증가하면서 파이로필라이트와 클로리토이드가 반응하여 십자석이 생성된 것으로 보이며, 이때 클로리토이드는 모두 소모되어 암석 내에서 관찰되지 않는 것으로 판단된다. 결국 일라이트가 백운모로 전이되는 과정에서 형성되는 혼합상 백운모는 십자석 생성에 필요한 광물을 공급하는 중요한 역할을 하는 것으로 보인다. 이 반응이 $300^{\circ}C$ 이상에서 일어나는 점과 혼합상 백운모에서 분리된 파이로필라이트가 약 $350^{\circ}C$에서 알루미늄 규산염 광물로 전이되는 점을 감안할 때, 백운사층 셰일은 $300{\sim}350^{\circ}C$의 변성환경을 경험한 것으로 판단된다.

The generation of staurolite from the mixed-phase muscovite and the metamorphic environment of shales in the Baekunsa formation, Hongsan, Buyeo, were studied using electron probe micro analysis (EPMA). The average chemical composition of mica-type mineral is $(K_{1.11}Na_{0.26}Ca_{0.04})(Al_{3.93}Fe_{0.21}Mg_{0.07})(Si_{6.08}Al_{1.92})O_{20}(OH)_4$, and shows a characteristics of the so-called illite with a low content of interlayer cations and Fe, Mg in octahedral sites. The mica-type mineral shows a typical chemical composition of the mixed-phase among muscovite, pyrophyllite, and chlorite (mixed-phase muscovite, $Mu_{70.5}Py_{23.5}Ch_{6.0}$). The staurolite, in general, occurs with the mixed-phase muscovites, pyrophyllites, and aluminosilicates in the rock. We consider that staurolite can be formed by a reaction involving pyrophyllite such as pyrophyllite+chloritoid. The chloritoid is formed by a reaction between pyrophyllite and chlorite and is supposed to be used up in the process of staurolite formation. As a result, the mixed-phase muscovite, formed during the transition of illite to muscovite, plays an important role for the generation of the staurolite. Considering that the reaction occurs at the temperature higher than $300^{\circ}C$ and pyrophyllites transform into aluminosilicates at $350^{\circ}C$, the shale in the Baekunsa formation can be considered to have been experienced a metamorphic temperature between $300{\sim}350^{\circ}C$.

키워드

참고문헌

  1. Ahn, J.H. and Peacor, D.R. (1986) Transmission and analytical electron microscopy of the smectite to illite transition. Clays and Clay Minerals, 34, 165-179. https://doi.org/10.1346/CCMN.1986.0340207
  2. Berman, R.B. (1988) Internally-consistent thermodynamic data for minerals in the system $Na_2O-K_2OCaO- MgO-FeO-Fe_2O_3-Al_2O_3-SiO_2-TiO_2-H_2O-CO_2$. Journal of Petrology, 29, 445-522. https://doi.org/10.1093/petrology/29.2.445
  3. Brattli, B. (1997) A rectorite-pyrophyllite-chlorite-illite assemblage in pelitic rocks from Colombia. Clay Mineralogy, 32, 425-434. https://doi.org/10.1180/claymin.1997.032.3.05
  4. Chatterjee, N.D. (1973) Low-temperature compatibility relations of the assemblage quartz-paragonite and the thermodynamic status of the phase rectorite. Contributions to Mineralogy and Petrology, 42, 259-271. https://doi.org/10.1007/BF00371590
  5. Choi, H.I. (1988) Lacustrine turbidite sequence in the Amisan Formation, Ogma area, Chungnam Coalfield: a sublacustrine fan deposit. Journal of the Geological Society of Korea, 24, 376-387.
  6. Choi, H.I., Kim, D.S., and Suh, H.G. (1987) Stratigraphy, depositional environment and basin evolution of the Daedong strata in the Chungnam coalfield. Korea Institute of Energy and Resources, KR-87(B)-3, 97p (in Korean with English abstract).
  7. Choi, S.H. (2009) A mineralogical study on the illite in the sedimentary rock from the Taebaek area : EPMA, TEM study. M.S. Thesis, Chonbuk National University, Jeonju (in Korean with English abstract).
  8. Choi, S.H. (2013) A study on the mixed-phase muscovite and the formation of Al-rich metamorphic minerals. Ph.D. Thesis, Chonbuk National University, Jeonju, 55-71 (in Korean with English abstract).
  9. Choi, S.H., Mun, H.R., Lee, Y.B., and Lee, J.H. (2011) A study on the muscovite-pyrophyllite mixed phase in the shale from the Manhang formation, Taebaek area. Journal of the Mineralogical Society of Korea, 24, 313-320 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2011.24.4.313
  10. Choi, S.H., Mun, H.R., Lee, Y.B., Lee, J.H., and Kim, Y.M. (2012a) Mineralogical study on shales of the Sadong and Gobangsan formation, Munkyung area. Journal of the Mineralogical Society of Korea, 25, 1-8 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2012.25.1.001
  11. Choi, S.H., Mun, H.R., Lee, Y.B., and Lee, J.H. (2012b) Illite, reviewed on the chemical compositions- The mixed phase among muscovite, pyrophyllite and chlorite; EPMA quantitative analysis of shale from the Jigunsan formation at Seokgaejae in Samchuk-City, Gangwon-do. Journal of the Mineralogical Society of Korea, 25, 143-153 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2012.25.3.143
  12. Choi, S.H., Lee, Y.B., and Lee, J.H. (2012c) A mineralogical study on shale of the Baekunsa formation from the Hongsan area, Buyeo. Proceedings of the Annual Joint Conference, Petrological Society of Korea and Mineralogical Society of Korea (Abstracts), Seoul, Korea, May 17, 132-134 (in Korean).
  13. Deer, W.A., Howie, R.A., and Zussman, J. (1992) An introduction to the rock forming minerals. 2nd edition. John Wiley and Sons, New York.
  14. Egawa, K. and Lee, Y.I. (2006) Stratigraphy of the Nampo Group in the Ocheon and Oseosan areas: significance of conglomerates of the Jogyeri Formation for unconformity. Journal of the Geological Society of Korea, 42, 635-643 (in Korean).
  15. Evans, B.W. and Guggenheim, S. (1988) Talc, pyrophyllite, and related minerals. In: Bailey, S.W. (ed.) Hydrous phyllosilicates, Reviews in Mineralogy, Vol. 19, Mineral. Soc. America, 225-294.
  16. Frey, M. (1978) Progressive low-grade metamorphism of a black shale formation, Central Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages. Journal of Petrology, 19, 95-135. https://doi.org/10.1093/petrology/19.1.95
  17. Ghent, E.D., Stout, M.Z., and Ferri, F. (1989) Chloritoid- paragonite-pyrophyllite and stilpnomelane-bearing rocks near Blackwater mountain, Western rocky mountains, British Columbia. Canadian Mineralogist, 27, 59-66.
  18. Grim, R.E., Bray, R.H., and Bradley, W.F. (1937) The mica in argillaceous sediments. American Mineralogist, 22, 813-829.
  19. Han, R., Ree, J.H., Cho, D.R., Kwon, S.T., and Armstrong, R. (2006) SHRIMP U-Pb zircon ages of pyroclastic rocks in the Bansong Group, Taebaeksan Basin, South Korea and their implication for the Mesozoic tectonics. Gondwana Research, 9, 106-117. https://doi.org/10.1016/j.gr.2005.06.006
  20. Hemley, J.J., Montoya, J.W., Marinenko, J.W., and Luce, R.W. (1980) Equulibria in the system $Al_{2}O_{3}$- $SiO_2-H_2O$ and some general implications for alteration/ mineralization processes. Economic Geology, 75, 210-228. https://doi.org/10.2113/gsecongeo.75.2.210
  21. Jeon, H., Cho, M., Kim, H., Horie, K., and Hidaka, H. (2007) Early Archean to Middle Jurassic evolution of the Korean Peninsula and its correlation with Chinese Cratons: SHRIMP U-Pb zircon age constraint. The Journal of Geology, 115, 525-539. https://doi.org/10.1086/519776
  22. Jeon, H.J., Cho, M.S., Kim, H.C., Horie, K., and Hidaka, H. (2005) U-Pb zircon geochronology of Early Jurassic Daedong Supergroup, South Korea: tectonic implications. 60th Annual Meeting of the Geological Society of Korea (Abstracts), Jinju, October 28-29, 9p.
  23. Jiang, W.T., Essene, E.J., and Peacor, D.R. (1990) Transmission electron microscopic study of coexisting pyrophyllite and muscovite : Direct evidence for the metastability of illite. Clays and Clay Minerals, 38, 225-240. https://doi.org/10.1346/CCMN.1990.0380301
  24. Jiang, W.T. and Peacor, D.R. (1993) Formation and modification of metastable intermediate sodium potassium mica, paragonite, and muscovite in hydrothermally altered metabasites from northern Wales. American Mineralogist, 78, 782-793.
  25. Kang, I.M. (2012) About short-stacking effect of illite- smectite mixed layers. Economic and Environmental Geology, 45, 71-78 (in Korean with English abstract). https://doi.org/10.9719/EEG.2012.45.2.071
  26. Kerrick, D.M. and Jacobs, G.K. (1981) A modified Redlich-Kwong equation for $H_2O$, $CO_2$, and $H_2O-CO_2$ mixtures at elevated pressures and temperatures. American Journal of Science, 281, 735-767. https://doi.org/10.2475/ajs.281.6.735
  27. Kimura, T. (1988) Mesozoic floras of East and Southeast Asia, with a short note on the Cenozoic floras of Southeast Asia and China. Bulletin of Tokyo Gakugei University Section IV, 40, 147-164.
  28. Lee, J.H. and Peacor, D.R. (1983) Intralayer transitions in phyllosilicates of the Martinsburg Shale. Nature, 303, 608-609. https://doi.org/10.1038/303608a0
  29. Lee, J.H., Peacor, D.R., Lewis, D.D., and Wintsch, R.P. (1984) Chlorite-illite/muscovite interlayered and interstratified crystals: A TEM/STEM study. Contributions to Mineralogy and Petrology, 88, 372-385. https://doi.org/10.1007/BF00376762
  30. Lee, J.H. Ahn, J.H., and Peacor, D.R. (1985) Textures in layered silicates : progressive changes through diagenesis and low-temperature metamorphism. Journal of Sedimentary Petrology, 55, 532-540.
  31. Lee, J.H., Choi, S.H., Lee, Y.B., and Mun, H.R. (2012) A review on illite - Mixed phase among muscovite, pyrophyllite and chlorite. Annual Conference of the Geological Society of Korea (Abstracts), Jeongseon, October 24-27, 144p (in Korean).
  32. Lee, Y.B. (1993) Mineralogical studies of phyllosilicates on the diagenesis and metamorphism of the Jigunsan and the Manhang formation : EPMA/TEM study. M.S. Thesis, Chonbuk National University, Jeonju (in Korean with English abstract).
  33. Livi, K.T., Christidis, G.E., Árkai, P., and Veblen, D. R. (2008) White mica domain formation : A model for paragonite, margarite and muscovite formation during prograde metamorphism. American Mineralogist, 93, 520-527. https://doi.org/10.2138/am.2008.2662
  34. Montaya, J.W. and Hemley, J.J. (1975) Activity relations and stabilities in alkali feldspars and mica alteration reactions. Economic Geology, 70, 577-583. https://doi.org/10.2113/gsecongeo.70.3.577
  35. Paradis, S., Velde, B., and Nicot, E. (1983) Chloritoidpyrophyllite-rectorite facies from Brittany, France. Contributions to Mineralogy and Petrology, 83, 342-347. https://doi.org/10.1007/BF00371202
  36. Park, S.I. and Sun, S.D. (2001) Conodont biostratigraphy of the Middle Carboniferous System in the Taebaek Area, Kangwondo, Korea. Journal of Korean Earth Science Society, 22, 558-570 (in Korean with English abstract).
  37. Rhee, S. and Ahn, J.H. (2003) Microstructural Intergrowth of margarite and chlorite in a schist from Unkyori formation of Miwon area. Journal of the Mineralogical Society of Korea, 16, 255-263 (in Korean with English abstract).
  38. Shimamura, S. (1931) Geological atlas of Chosen, Ranpo sheet (1:50,000). Geological Survey of Chosen.
  39. Song, Y. (2012) Illite polytypes: The characteristics and the application to the fault age determination. Economic and Environmental Geology, 45, 169-180 (in Korean with English abstract). https://doi.org/10.9719/EEG.2012.45.2.181
  40. Song, Y.S., Choi, J., and Park, K.H. (2008) The Tectonometamorphic evolution of Metasedimentary rocks of the Nampo Group outcropped in the area of the Daecheon Beach and Maryangri, Seocheon-gun, Chungcheongnam-do. The Journal of the Petrological Society of Korea, 17, 1-15 (in Korean with English abstract).
  41. Spear, F.S. (1993) The metamorphism of pelite. In: Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, Mineral. Soc. America, 337-391.
  42. Srodon, J. and Eberl, D.D. (1984) Illite. In: Bailey, S.W. (ed.) Micas, Reviews in Mineralogy, Vol. 13, Mineral. Soc. America, 495-544.
  43. Zen, E-an (1960) Metamorphism of Lower Paleozoic rocks in the vicinity of the Taconic range in westcentral Vermont. American Mineralogist, 45, 129-175.