• Title/Summary/Keyword: Mine Blasting

Search Result 66, Processing Time 0.023 seconds

Analysis of Blasting Overbreak using Stereo Photogrammetry in an Underground Mine (입체사진측량기법을 이용한 지하 광산의 발파 여굴 분석에 관한 연구)

  • Lee, Seung-Joong;Choi, Sung-Oong;Lee, Sudeuk;Jeon, Seokwon;Jin, Yeon-Ho;Jung, Min-Su
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.348-362
    • /
    • 2016
  • This study describes the results of blasting overbreak analysis using the stereo photogrammetry method in an underground mine. For comparing its quantitative measurements, LIDAR system was applied to the test site and blasting overbreak was analyzed for 4 test blasting operations. The difference in values obtained from the two methods showed only 0.81% in volume and 1.05% in area, respectively, therefore authors verify the field applicability of stereo photogrammetry method on underground mine. The volumes of overbreak measured from 4 test blastings were $29.84m^3$, $22.45m^3$, $14.54m^3$ and $5.46m^3$, respectively, in photogrammetry analysis on excavation surface, and it was shown that the volume of overbreak decreases with blasting sequence. From these measurements, it is concluded that the stereo photogrammetry method can describe the underground excavation surface effectively and the its quantitative data can be used for analysis of volume, area and overbreak of excavation zone.

Stereo-photogrammetry Analysis for Over-break Control (여굴 제어를 위한 입체사진측량기법 분석)

  • Kim, Byung-Ryeol;Jeong, Min-Su;Jin, Yeon-Ho;Choi, Sung-Oong
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.12-19
    • /
    • 2018
  • When an underground limestone mine selects room-and-pillar mining method, in which the stability of mine openings is maintained by leaving safety pillars, the stability of safety pillars is always incompatible with their productivity. Therefore, the engineering decision for stability and productivity is essential. In this study, a progress of excavation faces by conventional blasting pattern has been examined in field for investigating over-break and stereo-photogrammetry method has been applied to this field measurement for improvement of accuracy. Also this result has been reflected instantly to composite blasting pattern by feedback, for minimizing overbreak. Field tests showed the relevant results that $3.5m^2$ in over-break out of $70m^2$ in total excavation face has been decreased, that is 5% of reduction rate in maximum.

Low frequency Long Duration Blast Vibrations and Their Effect on Residential Structures (지속시간이 긴 저주파 발파진동과 주거 구조물에 미치는 영향)

  • Roy M. P.;Sirveiya A. K.;Singh P. K.
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.57-66
    • /
    • 2005
  • A major concern with blasting at surface mines is generation of ground vibration, air blast, flyrock, dust & fume and their impact on nearby structures and environment. A study was conducted at a coal mine in India which produces 10 million tonne of coal and 27 million cubic meter of overburden per annum. Draglines and shovels with dumpers carry out the removal of overburden. Detonation of 100 tonnes of explosives in a blasting round is a common practice of the mine. These large sized blasts often led to complaints from the nearby inhabitants regarding ground vibrations and their affects on their houses. Eighteen dragline blasts were conducted and their impacts on nearby structures were investigated. Extended seismic arrays were used to identify the vibration characteristics within a few tens meters of the blasts and also as modified by the media at distances over 5 km. 10 to 12 seismographs were deployed in an array to gather the time histories of vibrations. A signature blast was conducted to know the fundamental frequency of the particular transmitting media between the blast face and the structures. The faster decay of high frequency components was observed. It was also observed that at distances of 5km, the persistence of vibrations in the structures was substantially increased by more 10 seconds. The proximity of the frequency of the ground vibration to the structure's fundamental frequencies produced the resonance in the structures. On the basis of the fundamental frequency of the structures, the delay interval was optimized, which resulted into lower amplitude and reduced persistence of vibration in the structures.

The Application of Gassed Bulk Emulsion to Quarry Blasting in Limestone Mine (석회석 광산 채석발파에서 Gassed Bulk Emulsion의 적용)

  • Min, Hyung-Dong;Jeong, Min-Su;Park, Yun-Seok;Lee, Eung-So;Lee, Won-Wook
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.61-70
    • /
    • 2007
  • Korean large limestone mines started to employ bulk emulsion explosives to improve the productivity in early 2000s. As the application of the bulk emulsion explosives became common in the mid 2000s, the bulk emulsion application increases overall performance but it tends to decrease the moving and heaving because it lacks in gas volume and heat energy. Therefore, the chemical gassing technique was introduced to improve the blasting efficiency of the existing bulk emulsion explosives. The chemical gassing is a technique to replacing GMB(Glass Micro Balloon), which is used for a sensitizer, with gassing agent to chemically sensitize it. This paper introduces the case of successful application of chemical gassing in a Korean large limestone mine. We also compared and evaluated the blast and work efficiency between bulk emulsion GMB & gassing agent (chemical gassing). The results indicate that the replacement of GMB with gassing agent improved fragmentation in the upper part and toe of a bench as well as moving efficiency of the material.

Human Error Probability Determination in Blasting Process of Ore Mine Using a Hybrid of HEART and Best-Worst Methods

  • Aliabadi, Mostafa Mirzaei;Mohammadfam, Iraj;Soltanian, Ali Reza;Najafi, Kamran
    • Safety and Health at Work
    • /
    • v.13 no.3
    • /
    • pp.326-335
    • /
    • 2022
  • Background: One of the important actions for enhancing human reliability in any industry is assessing human error probability (HEP). The HEART technique is a robust tool for calculating HEP in various industries. The traditional HEART has some weaknesses due to expert judgment. For these reasons, a hybrid model is presented in this study to integrate HEART with Best-Worst Method. Materials Method: In this study, the blasting process in an iron ore mine was investigated as a case study. The proposed HEART-BWM was used to increase the sensitivity of APOA calculation. Then the HEP was calculated using conventional HEART formula. A consistency ratio was calculated using BWM. Finally, for verification of the HEART-BWM, HEP calculation was done by traditional HEART and HEART-BWM. Results: In the view of determined HEPs, the results showed that the mean of HEP in the blasting of the iron ore process was 2.57E-01. Checking the full blast of all the holes after the blasting sub-task was the most dangerous task due to the highest HEP value, and it was found 9.646E-01. On the other side, obtaining a permit to receive and transport materials was the most reliable task, and the HEP was 8.54E-04. Conclusion: The results showed a good consistency for the proposed technique. Comparing the two techniques confirmed that the BWM makes the traditional HEART faster and more reliable by performing the basic comparisons.

3-dimensional Modeling and Mining Analysis for Open-pit Limestone Mine Stope Using a Rotary-wing Unmanned Aerial Vehicle (회전익 무인항공기를 이용한 노천석회석광산 채굴장 3차원 모델링 및 채굴량 분석)

  • Kang, Seong-Seung;Lee, Geon-Ju;Noh, Jeongdu;Jang, Hyeongdoo;Kim, Sun-Myung;Ko, Chin-Surk
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.701-714
    • /
    • 2018
  • The purpose of this study is to show the possibility of 3-dimensional modeling of open-pit limestone mine by using a rotary-wing unmanned aerial vehicle, a drone, and to estimate the amount of mining before and after mining of limestone by explosive blasting. Analysis of the image duplication of the mine has shown that it is possible to achieve high image quality. Analysis of each axis error at the shooting position after analyzing the distortions through camera calibration was shown the allowable range. As a result of estimating the amount of mining before and after explosive blasting, it was possible to estimate the amount of mining of a wide range quickly and accurately in a relatively short time. In conclusion, it is considered that the drone of a rotary-wing unmanned aerial vehicle can be usefully used for the monitoring of open-pit limestone mines and the estimation of the amount of mining. Furthermore, it is expected that this method will be utilized for periodic monitoring of construction sites and road slopes as well as open-pit mines in the future.

Comparison of Hoek-Brown and Mohr-Coulomb failure criterion for deep open coal mine slope stability

  • Aksoy, Cemalettin O.;Uyar, Guzin G.;Ozcelik, Yilmaz
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.809-828
    • /
    • 2016
  • In deep open pit mines, slope stability is very important. Particularly, increasing the depths increase the risks in mines having weak rock mass. Blasting operations in this type of open pits may have a negative impact on slope stability. Several or combination of methods can be used in order to enable better analysis in this type of deep open-pit mines. Numerical modeling is one of these options. Many complex problems can be integrated into numerical methods at the same time and analysis, solutions can be performed on a single model. Rock failure criterions and rock models are used in numerical modeling. Hoek-Brown and Mohr-Coulomb terms are the two most commonly used rock failure conditions. In this study, mine planning and discontinuity conditions of a lignite mine facing two big landslides previously, has been investigated. Moreover, the presence of some damage before starting the study was identified in surrounding structures. The primary research of this study is on slope study. In slope stability analysis, numerical modeling methods with Hoek-Brown and Mohr-Coulomb failure criterions were used separately. Preparing the input data to the numerical model, the outcomes of patented-blast vibration minimization method, developed by co-author was used. The analysis showed that, the model prepared by applying Hoek-Brown failure criterion, failed in the stage of 10. However, the model prepared by using Mohr-Coulomb failure criterion did not fail even in the stage 17. Examining the full research field, there has been ongoing production in this mine without any failure and damage to surface structures.

Case Study for the Improvement of Tunnel Advance Rate & the Time Reduction of Working Process in Long Hole Blasting About Tunnel Excavation (터널 장공발파에서 굴진율 개선 및 작업공정 시간 단축 사례)

  • Kim, Hee-Do;Lee, Jun-Won;Lee, Ha-Young
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.32-39
    • /
    • 2013
  • Generally, The way of long hole blasting is carried out in coal-face, basic excavation for dam, mine etc. Recently, this long hole blasting has been implemented in civil engineering for efficiency & economic feasibility. National express no.600 of Pusan outer high-express ${\bigcirc}$ construction site with four lanes of the length of 8km was also a site applied by long hole blasting. But After blasting, tunnel advance rate is less than 75%. As a result of that, Follow-up working time is influenced. Thereby, The total of working process is significantly so increased that planned excavation cannot be implemented many times. For not only improve excavation rate but reduce working process time in job site, we introduce blasting case which apply the ${\phi}36mm$ explosive suited for high desity of charging among long hole blasting in order to overcome mentioned problem.

On the Blasting Technology Develppment of Korea (한국의 폭파 기술 발전)

  • Huh, Ginn
    • Explosives and Blasting
    • /
    • v.13 no.4
    • /
    • pp.5-27
    • /
    • 1995
  • Korea-America tungsten treaty is not only Earnning Us Dollar but also it was turnning point of tunnelling technology development such as a burn cut. Because 10th of specialist worked at Sangdong mine under treaty. The first of all, Experimental blasting pattern for single free face carried out. As a result it has brought the burden and $charge/m^3$ and also space distance. After the center holes are blasted. Remain of the works was the implementation of bench cut against the openning to make the full sectional are required. $Ca=\frac{A}{SW}$ where as A =ndi=m activated area S = Peripheral length of Charged room Ca = Rock Coefficient di=Holes diameter Later in 1980, The Oynaite Explosive is Replaced into Emulsion & Milli-Second Delay Electric Cap. Seqential Blasting machine were Applied in the Site. The Subway Tunnelling have been worked so Carefully for Vibration and Noise to near Shopping and housing area. We carried out Empirical formula to solve city Envoirement pollution as follow For Granite: $V=KW^{0.57}D^{-1.75}$ For Granite : $V=KW^{0.5}D^{-1.5}$ V=PPV(cm/sec) K=Coefficency D=Distance(m) W=Amount of power/delay(kg)

  • PDF

Engineering Approaches and Recent Advances of Slope Optimization in Surface Mines (노천광산에서의 사면 최적화를 위한 공학적 접근 및 최신 동향)

  • Park, Jun-Hyeok
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.35-43
    • /
    • 2021
  • Slope optimization aims to maximize the slope angle in an open pit mine, resulting in subsequent profits from additional ore extraction. The large open pit mines have adopted the advanced technologies to increase slope angle until they ensure the slope stability. This paper introduces a current stage of slope optimization efforts and best practices from the open pit mines.