• Title/Summary/Keyword: Mindlin plates

Search Result 115, Processing Time 0.027 seconds

A computational investigation on flexural response of laminated composite plates using a simple quasi-3D HSDT

  • Draiche, Kada;Selim, Mahmoud M.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.697-711
    • /
    • 2021
  • In this work, a simple quasi 3-D parabolic shear deformation theory is developed to examine the bending response of antisymmetric cross-ply laminated composite plates under different types of mechanical loading. The main feature of this theory is that, in addition to including the transverse shear deformation and thickness stretching effects, it has only five-unknown variables in the displacement field modeling like Mindlin's theory (FSDT), yet satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without requiring a shear correction factor. The static version of principle of virtual work was employed to derive the governing equations, while the bending problem for simply supported antisymmetric cross-ply laminated plates was solved by a Navier-type closed-form solution procedure. The adequacy of the proposed model is handled by considering the impact of side-to-thickness ratio on bending response of plate through several illustrative examples. Comparison of the obtained numerical results with the other shear deformation theories leads to the conclusion that the present model is more accurate and efficient in predicting the displacements and stresses of laminated composite plates.

Density-based Topology Design Optimization of Piezoelectric Crystal Resonators (압전 수정진동자의 밀도법 기반 위상 최적설계)

  • Ha, Youn Doh;Byun, Taeuk;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.63-70
    • /
    • 2014
  • Design sensitivity analysis and topology design optimization for a piezoelectric crystal resonator are developed. The piezoelectric crystal resonator is deformed mechanically when subjected to electric charge on the electrodes, or vice versa. The Mindlin plate theory with higher-order interpolations along thickness direction is employed for analyzing the thickness-shear vibrations of the crystal resonator. Thin electrode plates are masked on the top and bottom layers of the crystal plate in order to enforce to vibrate it or detect electric signals. Although the electrode is very thin, its weight and shape could change the performance of the resonators. Thus, the design variables are the bulk material densities corresponding to the mass of masking electrode plates. An optimization problem is formulated to find the optimal topology of electrodes, maximizing the thickness-shear contribution of strain energy at the desired motion and restricting the allowable volume and area of masking plates. The necessary design gradients for the thickness-shear frequency(eigenvalue) and the corresponding mode shape(eigenvector) are computed very efficiently and accurately using the analytical design sensitivity analysis method using the eigenvector expansion concept. Through some demonstrative numerical examples, the design sensitivity analysis method is verified to be very efficient and accurate by comparing with the finite difference method. It is also observed that the optimal electrode design yields an improved mode shape and thickness-shear energy.

Low-velocity impact response of laminated composite plates using a higher order shear deformation theory (고차 전단 변형이론에 의한 복합재료 적층판의 저속 충격응답)

  • Lee, Young-Shin;Park, Oung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1365-1381
    • /
    • 1990
  • A $C^{0}$ continuous displacement finite element method based on a higher-order shear deformation theory is employed in the prediction of the transient response of laminated composite plates subjected to low-velocity impact. A modified contact law was applied to calculate the contact force during impact. The discrete element chosen is a nine-noded quadrilateral with 5 degree-of-freedom per node. The Wilson-.theta. time integration algorithm is used for solving the time dependent equations of the impactor and the central difference method was adopted to perform time integration of the plate. Numerical results, including the contact force history, deflection, and velocity history, are presented. Comparisons of numerical results using a higher order theory and a first-order theory show that using a higher order theory provides more accurate results. Effects of boundary condition, impact velocity, and mass of the impactors are also discussed.d.

An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells

  • Kim, K.D.;Park, T.H.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.387-410
    • /
    • 2002
  • Formulation of an 8 nodes assumed strain shell element is presented for the analysis of shells. The stiffness matrix based on the Mindlin-Reissner theory is analytically integrated through the thickness. The element is free of membrane and shear locking behavior by using the assumed strain method such that the element performs very well in modeling of thin shell structures. The material is assumed to be isotropic and laminated composite. The element has six degrees of freedom per node and can model the stiffened plates and shells. A great number of numerical testing carried out for the validation of present 8 node shell element are in good agreement with references.

A technique for optimally designing fibre-reinforced laminated structures for minimum weight with manufacturing uncertainties accounted for

  • Walker, M.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.253-262
    • /
    • 2007
  • A methodology to design symmetrically laminated fibre-reinforced structures under transverse loads for minimum weight, with manufacturing uncertainty in the ply angle, is described. The ply angle and the ply thickness are the design variables, and the Tsai-Wu failure criteria is the design constraint implemented. It is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus the approach is a worst-case scenario approach. The finite element method, based on Mindlin plate and shell theory, is implemented, and thus effects like bending-twisting coupling are accounted for. The Golden Section method is used as the search algorithm, but the methodology is flexible enough to allow any appropriate finite element formulation, search algorithm and failure criterion to be substituted. In order to demonstrate the procedure, laminated plates with varying aspect ratios and boundary conditions are optimally designed and compared.

Reconstruction of Dispersive Lamb Waves in Time Plates Using a Time Reversal Method

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.59-63
    • /
    • 2008
  • Time reversal (TR) of nondispersive body waves has been used in many applications including ultrasonic NDE. However, the study of the TR method for Lamb waves on thin structures is not well established. In this paper, the full reconstruction of the input signal is investigated for dispersive Lamb waves by introducing a time reversal operator based on the Mindlin plate theory. A broadband and a narrowband input waveform are employed to reconstruct the $A_0$ mode of Lamb wave propagations. Due to the frequency dependence of the TR process of Lamb waves, different frequency components of the broadband excitation are scaled differently during the time reversal process and the original input signal cannot be fully restored. This is the primary reason for using a narrowband excitation to enhance the flaw detectability.

Vibration Analysis of Mindlin-Plate Structures having Attachments by the Receptance Method (Receptance 방법에 의한 부가물을 갖는 Mindlin판유추 구조제의 진동해석)

  • S.Y. Han;J.H. Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.98-106
    • /
    • 1995
  • In ship and offshore structures, there exist many local structural systems which may be regarded as a combined structural systems composed of thick plates or double wall panels and attachments reducible to damped spring-mass systems. For vibration analysis of such a combined system an analytical method based on the receptance method is presented in this paper. The free vibrational characteristics and forced vibration responses of the combined system can be calculated by synthesis of receptances of the panel and attachments. To calculate receptances of the panel, it may be regarded as a Mindlin plate for consideration of effects of shear deformation and rotary inertia and the assumed mode-Lagrange's equation method is applied using Timoshenko beam function or polynomials having properties of Timoshenko beam function as trial functions. Through some numerical calculations, accuracy and efficiency of the presented method are shown.

  • PDF

Topology Optimization of General Plate Structures by Using Unsymmetric Layered Artificial Material Model (비대칭 층을 가지는 인공재료모델을 이용한 일반 평판구조물의 위상최적화)

  • Park, Gyeong-Im;Lee, Sang-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.67-74
    • /
    • 2007
  • The unsymmetrically layered artificial material model is consistently introduced to find the optimum topologies of the plate structures. Reissner-Mindlin (RM) plate theory is adopted to formulate the present 9-node plate element considering the first-order shear deformation of the plates. In the topology optimization process, the strain energy to be minimized is employed as the objective function and the initial volume of structures is adopted as the constraint function. In addition, the resizing algorithm based on the optimality criteria is used to update the hole size introduced in the proposed artificial material model. Several numerical examples are rallied out to investigate the performance of the proposed technique. From numerical results, the proposed topology optimization techniques are found to be very effective to produce the optimum topology of plate structures. In particular, the proposed unsymmetric stiffening layer model make it possible to produce more realistic stiffener design of the plate structures.

  • PDF

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.113-148
    • /
    • 2016
  • In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.

Nonlinear Analysis of Skew Plates by $C^{\circ}$-Hierarchical Plate Element ($C^{\circ}$-계층적 평판요소에 의한 경사평판의 비선형 해석)

  • 우광성;허철구;박진환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.1
    • /
    • pp.65-76
    • /
    • 2001
  • 본 연구의 목적은 평판의 모서리 둔각이 135도까지를 갖는 재료적 비선형 경사평판을 해석하기 위해 C°-계층적 평판요소를 개발하는 것이다. 기하학적 변환을 통해 경사진 경계조건은 직각좌표계의 좌표변환을 이용하여 해결할 수 있다. 여기서, 경사경계는 경사진 변 전체 또는 경사교량의 교좌위치와 관련된 몇 개의 선택지점만을 고려할 수 있게 하였다. 이 목적을 위해 경사교량의 교좌장치의 이동방향을 설명할 수 있도록 1차 전단변형을 갖는 Reissner/Mindlin 평판이론에 기초를 둔 5-자유도 경사평판요소가 정식화되었다. 한편, 평판의 극한내하력을 추정하기 위해 von-Mises 항복기준에 기초를 둔 소성유동법칙을 갖는 증분소성이론이 채택되었다. 또한, ADINA 소프트웨어에 의한 h-version 모델과 제안된 p-version 모델을 사용하여 경사각, 경계조건과 하중의 변화에 따른 영향을 조사하였다. 해석결과는 이론값과 문헌에 보고된 수치해석값과 비교되었다. 자유도 수에 따른 정확도를 비교기준으로 한다면, 본 연구에서 제안된 해석모델은 지금까지 개발된 가장 효율적 도구의 하나라고 할 수 있다.

  • PDF